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ABSTRACT
Finding causal relationships between climatic observations and veg-

etation dynamics is one of the key research questions in geosciences.

Due to the special characteristics of climate–vegetation data sets,

a special need arises for developing novel machine learning meth-

ods that can discover such relationships. Common approaches are

applied on each location of the Earth independently or on limited

regions at local scale. However, these kind of analyses are not able

to exploit that remote locations might have similar characteristics.

In this work, we present a novel Granger-causality framework that

is based on multi-task learning. In this setting, the different loca-

tions are considered as different tasks. Our framework models the

global spatio-temporal data set in a multi-task learning setting with-

out taking into account any prior knowledge about the similarity

between the different tasks. Experimental results indicate that, with

this spatio-temporal framework, it is possible to detect patterns that

are much less visible with traditional Granger-causality methods.

In addition, by using this pure data-driven approach, regions with

similar climate–vegetation dynamics can emerge.

KEYWORDS
spatio-temporal data, time series, multi-task learning, climate data,

Granger causality, shared representation

1 INTRODUCTION
Research questions related to climate change become the core of

climate research. Many studies try to either make forecasts about

future states of the ecosystems or to detect causal relationships be-

tween climatic variables and natural or anthropogenic factors (i.e.,

the impact of greenhouse gases on the increase of global temper-

ature). Typically in geosciences, research is based on mechanistic

climate models, namely Earth System Models (ESMs), which have

been developed according to the physical knowledge about the

complex climatic systems. These models consist of a battery of
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equations and derivations that simulate the real world without hav-

ing any feedback from it. On the other hand, data-driven models

take observational data as input and model these data by learning

a hypothesis function. These models make no assumptions about

the physical representation of the systems.

In the recent years, the amount of the publicly available climatic

data sets has vastly increased, making climate science one of the

most data-rich research domains. Climatic data sets consist of global

observations which span the last decades. These records can be

found in various spatial and temporal resolutions and are usually

collected from satellites or in-situ measurements. Undoubtedly,

the machine learning community has the potential to contribute

in climate science by developing advanced models, which are ap-

propriate for climate data sets and applications. For instance, in

forecasting of climate variables (which are represented as time se-

ries), many machine learning algorithms have been used apart from

the statistical autoregressive models, such as neural networks [15],

SVMs [17], and Gaussian Processes [21].

On the other hand, in the direction of causal inference, one of

the most common approaches in climate sciences for detecting

causality is called Granger causality. Granger causality [11] can be

seen as a predictive causality between two time series, since one

examines if the past of a time series A is informative in predicting

the future of a time series B. In other words, a time series A Granger-

causes a time series B if the past values of the time series A improve

the performance of a model which predicts the future values of a

time series B and includes also information from the past values

of B (see Sect. 2 for more details). Analyses of this kind have been

applied to investigate the influence of one climatic variable on

another, e.g., the Granger causal effect of CO2 on global temperature

[2, 23], of vegetation and snow coverage on temperature [13], of

sea surface temperatures on the North Atlantic Oscillation [18], or

of the El Niño Southern Oscillation on the Indian monsoons [16].

More advanced methods incorporate the spatio-temporal structure

of the data in a Granger causality modelling approach [6, 8].

In recent work, we have shown that causal inference in climate

science can be substantially improved by replacing traditional sta-

tistical models with machine learning methods that incorporate

hand-crafted higher-level features of raw time series [19]. In this

work, we introduce a novel framework that combines multi-task

learning (MTL) methods, which naturally model spatio-temporal

data, with the concept of Granger causality (Sect. 2) and we use the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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same (non-linear) representation of the climate data sets as in Pa-

pagiannopoulou et al. [19]. We mainly focus on: (i) the comparison

of the predictive performance of single task learning approaches

on climate data against the MTL methods, (ii) the modelling of the

tasks (for all locations) of the entire global map as a single MTL

problem, since distant regions may have similar behaviour in terms

of the examined dynamics, and (iii) the use of MTL models in the

context of Granger causality analysis. Our results indicate that by

using MTL modelling approaches and thus incorporating spatial

information, the model performance increases in terms of the R2

measure (Sect. 3). In addition, by using MTL models, which have

strong predictive power, Granger causality analysis becomes more

robust. This means that the outcome drawn from this kind of anal-

ysis leads to more stable conclusions, since Granger causality is

based on predictive power.

The proposed framework is applied on understanding the rela-

tionship between climate and vegetation dynamics. This is a funda-

mental research question in climate sciences due to the crucial role

of vegetation at global scale. Vegetation affects climate through the

evapotranspiration of the plants, and on the other way around, cli-

mate has a strong impact on vegetation since the climatic conditions

are the ones which form the type of vegetation in the particular

ecosystems. Therefore, by examining the way that climate affects

vegetation, we have a better understanding on the way that the

ecosystems are changing and, in a certain extend, on the direction

that climate is changing. A more precise description of this applica-

tion domain and the experimental setup will be provided in Sect. 2.

An extended version of this work can be found in [20].

2 METHODOLOGY
2.1 Granger causality and climate data
In the case of two time series s = [s1, s2, ..., sN ] and y = [y1,y2, ...,yN ],

with N being the number of the time points, Granger causality can

be expressed as the additional predictive power that the past of first

time series (s) offers in the forecast of the second time series (y),
when one tries to predict the value of the next time stamp of the

time series y by using only the history of the time series y. In our

problem, the time series s can be any climatic variable (e.g. tem-

perature, precipitation, radiation) measured on a specific location

while the time series y is the vegetation anomalies time series of

this certain location as defined in [19]. According to the definition

of Granger causality, a time series s Granger-causes another time

series y if the prediction of the y values for the next time stamps

are improved when information of the time series s is taken into

account. In order to quantify the performance improvement that

the information of the past values of s gives to the forecast of the

future values of the time series y, it is necessary to define a perfor-

mance measure to evaluate the model predictions. In our work, we

use the coefficient of determination R2 as defined in [19]. The R2

increases when the performance of the model improves and has

an optimum value of 1 while it can take arbitrarily negative values

if the forecasts are far worse than by just taking as predictions

the mean value of the observations. A more formal definition of

Granger causality by using the performance measure can be written

as follows:

Definition 1. A time series s Granger-causes another time se-
ries y if the performance measure R2 increases when the values of
st−1, st−2, ..., st−P are included in the model for the prediction of yt
value, in contrast to considering the values ofyt−1,yt−2, ...,yt−P only,
where P is the lag-time moving window.

In order to derive the predictions, two models should be built

for the prediction of the yt value; a baseline model which includes

information only from the past of yt , i.e., the yt−1,yt−2, ...,yt−P
only and a full model which includes also information of the time

series s, i.e., the values st−1, st−2, ..., st−P until a certain time-lag P .
In climate sciences, linear vector autoregressive (VAR) models are

often employed to make forecasts [2, 23]. However, we are focusing

only on the vegetation time series as target, so the following two

models are compared:

yt = ŷt + ϵ1 = β01 +
P∑
p=1

(
β11pyt−p + β12pst−p

)
+ ϵ1 (1)

yt = ŷt + ϵ1 = β01 +
P∑
p=1

β11pyt−p + ϵ1 (2)

Model (1) is the full model and model (2) is the baseline model, which
have been both described above. In that sense, the time series s
Granger-causes the time series y if the full model outperforms the

baseline model in terms of the performance measure that we have

introduced, i.e., the R2. In Granger causality, in order to assess the

improvement of the predictive performance, one should introduce a

statistical test. Since we are working on climate data it is not trivial

to define a statistical test without violating basic assumptions such

as the variable independence - for more details see [19]. For this

reason, we focus on the quantitative result of Granger causality

and not on the qualitative.

In real applications, when one examines the relationship between

two time series, it is possible that there are maybe other additional

effects, named confounders, that play a (causal) role for the one

or the other time series. Especially in climate sciences, where the

variables (e.g. temperature, precipitation etc.) are highly correlated,

the bivariate setting of Granger causality described above is not

appropriate and it might lead to incorrect conclusions. To this end,

recent studies [3, 9] propose the multivariate setting of Granger

causality for understanding relationships in complex systems such

as climate. In the multivariate setting, all the confounders are added

as additional time series variables in the framework. For example,

given a third time series z, which can be considered as a confounder

when one comes to decide whether a time series s Granger-causes
another time series y, information of the time series z should be

included in the baseline model. In other words, the baseline model

should include all the available information except for the cause

that is checked each time. For the multivariate setting the above

definition extends as follows.

Definition 2. A time series s Granger-causes another times series
y conditioned on time series z if the performance measure R2 increases
when the values of st−1, st−2, ..., st−P are included in the model for
the prediction of the yt value, in contrast to considering the values
yt−1,yt−2, ...,yt−P and the values zt−1, zt−2, ..., zt−P only, where P
is the lag-time moving window.
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In this case the baseline and the full model are written as follows:

yt = ŷt + ϵ1 = β01 +
P∑
p=1

(
β11pyt−p + β12pst−p+

β13pzt−p

)
+ ϵ1

(3)

yt = ŷt + ϵ1 = β01 +
P∑
p=1

(
β11pyt−p + β13pzt−p

)
+ ϵ1 (4)

As previously mentioned, the time series z can be correlated with s
which is examined as potential cause of y. To this end, information

for the time series z should be present in both models (baseline and

full) so that the method can tackle the cross-correlations between

the potential causes. For more than three correlated variables in

the system, the extension of this definition is straightforward.

As we mentioned above, in our recent work, we have introduced

an alternative way of assessing Granger causality. Specifically, we

have focused on quantitative instead of qualitative differences in

predictive performance between baseline and full models [19]. We

have also replaced traditional linear models with more accurate ma-

chine learning algorithms. That way, the baseline and the full model

give evidence of better predictions, and thus one can draw stronger

conclusions with respect to cause-effect relationships between the

variables.

2.2 Pixel-based approach: single-task learning
In this work, we investigate the relationship between climate and

vegetation. However, one can think of exploring different variable

relationships in problems with spatio-temporal data. In mathe-

matical notation, we symbolize a spatio-temporal data set as D =

{(X(1), y(1)), (X(2), y(2)), ..., (X(L), y(L))}, with L being the number

of different locations, X(l )
, the input matrix of predictor variables

and y(l ) the target variable for a given location l . The N observa-

tions of a location l are denoted as {(x(l )i ,y
(l )
i )}i=1, ...,N , while the

feature vectors of the predictor variables have the size of d , i.e.,

X(l ) = [x(l )
1
, ..., x(l )N ]T . Therefore, X(l ) ∈ RN×d

is the size of the

input feature matrix and y(l ) ∈ RN is the response time series of

size N .

In the singe-task setting, the most straightforward approach is

to apply a regression model for each location separately, as in [19].

That way, only the tuple (X(l ), y(l )) is used for each location l and
therefore, spatial information is not taken into account. This means

that, even if there are locations where the response variable has a

similar relationship with the predictor variables, this information is

not used by the modelling approach. Formally, we define a simple

linear regression model as f (l )(x(l )i ) = w(l )x(l )i , with x(l )i being one

observation of the input data and w(l )
being the weight vector

learned for particular location l .

2.3 Exploiting spatial relationships: multi-task
learning

In contrast to the single-task learning models, MTL approaches are

able to exploit information from other tasks with similar character-

istics. Especially in cases where the number of training instances

per task is rather limited, MTL has been proven beneficial, since the

data set of each task is “augmented” by the training examples of the

other tasks. Hence, the model parameters are estimated more con-

fidently, improving the generalization performance of the model.

Note that in MTL, a separate model for each task is trained. This

is because the tasks are considered similar but not identical. In

spatio-temporal applications, this is an assumption which can be

easily observed in the data; for example, neighbouring locations

tend to have similar behaviour, yet not identical.

Multi-task learning has been applied in various applications,

such as in medical sciences [5, 27] and computer vision [28]. In

climate science, in the works of Subbian and Banerjee [22] and

McQuade and Monteleoni [14], MTL modelling approaches are

used to improve the way multiple Earth System Models (ESMs)

outputs are combined. In these works, the different locations are

considered as different tasks. The result of these studies confirms

the idea that in locations that are close to each other, similar ESMs

perform in a similar way. In addition, other approaches, such as

a hierarchical MTL setting, have been also used in combination

with data coming from ESMs [10]. In the latter work, a hierarchical

scheme is adopted in which, at a first level, location tasks are trained

into an MTL setting, while at a second level, tasks of each variable

are trained together, sharing information to each other. Another

method for modelling spatio-temporal data proposed by Xu et al.

[25] uses the spatial autocorrelation to train local models in an

MTL fashion. Although this kind of modelling is becoming more

common in climate science, it has not been combined (to the best

of our knowledge) with causality approaches.

In this paper, we investigate MTL methods that are able to dis-

cover the relationship between the different locations (tasks), i.e.,

the relationship between the tasks is not known from the beginning.

Although, in climate data sets, a common assumption is that neigh-

boring locations tend to have similar (climatic) conditions, we do

not make use of this assumption. In our application, remote regions

can also have similar characteristics in terms of climate–vegetation

dynamics, and thus we prefer to apply a fully data-driven modelling

approach, which is able to detect this kind of information. For consis-

tency, we use the same notation as before, by denoting X(l ) ∈ RN×d

as input data matrix of the predictor variables, y(l ) ∈ RN as the

target vector for each location l and w(l ) ∈ Rd in which each value

corresponds to a weight. We define as [w(1),w(2), ...,w(L)] ∈ Rd×L

the weight matrix of all locations such that the w(l )
vector is the lth

column of the [w(1),w(2), ...,w(L)] matrix. Given a loss function L,

the multi-task minimization problem is formulated as:

min

w (1), ..,w (L)

L∑
l=1

N∑
i=1

L(w(l )x(l )i ,y
(l )
i ) + Ω(w(1), ...,w(L)) (5)

where Ω(w(1), ...,w(L)) is a factor which controls the relatedness

among the tasks.

Many MTL methods have been proposed in the literature that

are able to discover the relationship between the different tasks

and learn their weight vectors w(1),w(2), ...,w(L)
at once [1, 7, 29].

In real applications, the relationships between the tasks are un-

known, which means that some tasks can be related and some

others completely unrelated. This group structure among the tasks
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can be learned by methods known as clustered multi-task learning

(CMTL) methods [29]. To enumerate just a few of them, Xue et al.

[26] proposed a method which uses a Dirichlet process-based sta-

tistical model to identify similarities between related tasks, while

Jacob et al. [12] introduced a framework which identifies groups of

tasks and performs the learning at once. More recently, Barzilai and

Crammer [4] suggested a method which assigns explicitly each task

to a specific cluster, building a single model for each task by using

linear classifiers which are combinations of some basis. An alterna-

tive approach has been proposed by Zhou et al. [29] in which also

the structure of the task relatedness is learned during the training

phase. Interestingly, when case-specific conditions are fulfilled, this

method is equivalent to the method by Ando and Zhang [1], known

as the Alternative Structure Optimization (ASO), which belongs to

the category of MTL methods that assume the existence of a shared

low-dimensional representation among the tasks. In our work, we

apply the ASO method due to its simplicity and the fact that it

does not need a lot of iterations to capture the information about

the task relatedness that is needed. This is very important in our

application because the size of the global database we use [19], puts

severe limitations to the choice of method. Another aspect is that by

learning this low-dimensional representation we can have a visual

inspection of the "most predictive common structures" for each

region and check the relatedness between the different locations in

terms of the given application. In the following section we explain

in detail the ASO method used in our setting.

2.4 Learning predictive structures from
multiple tasks

The method of Ando and Zhang [1], called as the ASO algorithm, as-

sumes that there is a shared low-dimensional representation among

the tasks. Specifically, according to this method, the learned weight

vector of each individual task consists of two parts: (i) a representa-

tion on the initial high-dimensional space and (ii) a representation

on a shared low-dimensional space. The feature map between the

two spaces is learned during the training phase. In this setting, L

predictor functions { f (l )}Ll=1 are simultaneously learned, written

as,

f (l )(xi ) = w(l )x(l )i = u(l )x(l )i + v(l )Θx(l )i (6)

with Θ ∈ Rh×d being a parameter matrix, which serves as feature

map, with orthonormal row vectors, i.e., ΘΘT = I, h being the

dimensionality of the shared (low-dimensional) feature space, and

w(l ), u(l ) and v(l ) being the weight vectors for the full feature space,
the high-dimensional one (initial dimension d), and the shared

low-dimensional one (based on the h parameter), respectively.

Formally, ASO can be formulated as the following optimization

problem:

min

{w(l ),v(l ) },ΘΘT =I

L∑
l=1

( N∑
i=1

L(w(l )x(l )i ,y
(l )
i ) + λ(l )

u(l )
2
2

)
(7)

with

u(l )
2
2

being the regularization term (u(l ) = w(l ) − ΘT v(l ))

which controls the task relatedness among L tasks, (x(l )i ,y
(l )
i ) be-

ing the input vector and the corresponding target value of the ith

observation in a particular location l , and λ(l ) being a pre-defined

Figure 1: Graphical representation of the ASO method. The
input of themethod is the data sets X(1),X(2), ...,X(L) of all lo-
cations. The corresponding target vectors are denoted with
y(1), y(2), ..., y(L). The weight vector w(l ) ∈ Rd of the full space
is decomposed in two parts; to the weight vector u(l ) ∈ Rd of
the high-dimensional space and the weight vector v(l ) ∈ Rh

of the low-dimensional one. The low-dimensional feature
map ΘT ∈ Rd×h is common for all the tasks.

parameter – see Fig. 1 for the graphical representation of the nota-

tion.

There are several ways of solving the optimization problem of

Eq. (7) [1]. We adopt the Singular Value Decomposition (SVD)-based

ASO algorithm, proposed by Ando and Zhang [1], which achieves

good performance even on the first iteration of the method. As

mentioned before, this is crucial to our application given the large

number of tasks and the high-dimensional data sets. The steps of

the SVD-based ASO are presented in Algorithm 1.

Algorithm 1 SVD-ASO

Input: training data D(l ) = {(x(l )i ,y
(l )
i )}i=1, ...,N , where l =

1, ...,L
Parameters: h and λ = {λ(1), ..., λ(L)}
Output: Θ ∈ Rh×d and V = [v(1), ..., v(L)]T ∈ RL×h

Initialize: w(l ) = 0, l = 1, ...,L, and Θ to random

repeat
for l = 1 to L do

with fixed Θ and v(l ) = Θw(l )
, solve the optimization prob-

lem of Eq. (7) for u(l ):

argminu(l )
∑N
i=1 L(u(l )x(l )i + (v

(l )Θ)x(l )i ,y
(l )
i ) + λ(l )

u(l )
2
2

w(l ) = u(l ) + ΘT v(l )

end for
Apply an SVD on W = [

√
λ(1)w(1), ...,

√
λ(L)w(L)]:

W = V1DV2
T
(with diagonals of D in descending order)

Θ = V1
T [: h, :] // update Θ to the first h rows of V1

T

until convergence
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2.5 Data set and experimental setup
Weapply the proposed framework to a global climate and vegetation

data set composed and described in detail in Papagiannopoulou et al.

[19]
1
. The observations used in this data set come from satellite

and/or in situ measurements. The database spans a 30-year period

(1981-2010) at monthly temporal resolution and 1-degree latitude-

longitude spatial resolution. In this data set, the predictor variables

consist of the most important climatic drivers of vegetation, namely:

(i) land surface temperature, (ii) near-surface air temperature, (iii)

longwave/shortwave surface radiative fluxes, (iv) precipitation, (v)

snow water equivalent, and (vi) soil moisture. As target variable, we

use the Global Inventory Modelling and Mapping Studies (GIMMS)

NDVI 3g data set [24]. The NDVI is a graphical greenness indicator

which is commonly used for characterising vegetation. The target

time series are decomposed as in [19], and only the part of the

de-trended, de-seasonalized residuals is kept as target variable in

the analysis. In addition, we used also a battery of hand-crafted

features derived from the raw time series based on prior knowledge

on the field. As such, our set of predictive features includes not just

the raw data time series of each climate/environmental variable, but

also: seasonal anomalies, de-trended seasonal anomalies, lagged

variables, past cumulative variables, and extreme indices – see

[19]. The use of these non-linear features greatly improved causal

inference and help characterise non-linear relationships between

climate and vegetation dynamics in our recent work [19].

In all the experiments, we use as predictors all the climatic data

sets and the features that we have constructed from them, as well as

the 12-lagged values of the target variable. A total number of 3,209

predictor variables is included, i.e., d = 3,209 in our setting. These

variables constitute the input to our framework, i.e., the X(l ), l =
1, ...,L data sets. As target variable, we use the NDVI seasonal

anomalies as in [19], denoted as y(l ), l = 1, ...,L for each location.

We examine 13,072 land pixels where each pixel constitutes a single

task in our MTL setting, i.e., L = 13,072. The data set of each single

task consists of 360 monthly observations, i.e., N = 360. All the

methods have been developed in Python
2
. For the STL modelling,

we use the ridge regression for each location independently. The

regularization parameters are tuned in a separate validation set.

The optimization problems of the SVD-ASO algorithm are solved

by using the L-BFGS optimization algorithm.

3 RESULTS AND DISCUSSION
3.1 Single- versus multi-task learning model
We compare the STL versus the MTL approach in terms of their

predictive performance. Specifically, for the STL model, we use the

ridge regression. For the MTL modelling, the ASO-MTL model [1]

is applied. For the tuning of the regularization parameter λ, we use
a separate validation set for both methods. In the STL setting, the

λ parameter is tuned for each task separately, while in the MTL

setting the same λ is used for all the tasks. We have also tuned

the value of the h parameter in the ASO-MTL method, which is

the dimensionality of the shared feature space. We measure the

1
http://www.sat-ex.ugent.be/data.php

2
https://github.com/lhwm/hydro-climatic-biomes

performance of both methods in terms of R2, as in [19]. A compar-

ison between STL and the MTL approaches is depicted in Fig. 2.

Figure 2a shows the predictive performance of the ASO-MTL model

while Fig. 2b depicts the difference in terms of R2 of the MTL model

compared to the STL model. As highlighted in Fig. 2b, the predic-

tive performance of the MTL approach is consistently better in

all the world compared to the STL approach. This means that in

most regions, the spatial structure of the data explains more than

10% of the vegetation variability. In statistical terms, this implies

the existence of a hidden structure between the different locations

(tasks), which is informative with respect to our target variable.

Additionally, as one can observe in Fig. 2a, climate variability in

some regions explains more than 40% of the vegetation dynamics.

Particularly, the predictive performance of the model is stronger in

regions such as Australia, Africa and Central and North America.

To emphasize on the performance difference between the two mod-

elling approaches, the R2 scores (for all the tasks) are presented
as two different distributions in Fig. 2c. The distribution of the R2

scores of the STL approach is depicted by the blue histogram, while

the distribution of the R2 scores of the MTL approach is depicted

by the orange one. As one can observe, the orange distribution of

the R2 scores (for the MTL approach) is shifted to the right. This

means that the values of this distribution are typically greater than

the ones of the blue distribution (STL approach). Moreover, the

skewness of the blue histogram towards the left side indicates the

near-zero performance of the STL models in many locations.

We also evaluate the ability of the MTL model to detect Granger-

causal effects of climate on vegetation. Figure 2d depicts the results

of the full MTL model compared to the baseline MTL model (i.e., the

quantification of Granger causality analysis). The baseline model

uses only the past values of vegetation for the prediction of the

future NDVI residuals [19]. As one can observe, in most regions of

the world, climate dynamics Granger-cause vegetation anomalies.

On the other hand, the STL model has limited ability in detecting

Granger-causal relationships compared to the MTL approach, even

though the baseline MTL model is stronger than the baseline STL

model. This is illustrated in Fig. 2e, where in almost all regions the

quantification of Granger causality of the MTL approach increases

substantially compared to the one of the STL approach. Similar to

Fig. 2c, Fig. 2f depicts the difference in predictive performance (in

terms of R2) between the full and the baseline model (quantification

of Granger causality) for the STL and the MTL approach. As before,

the distribution of the Granger causality derived from the STL

approach is depicted by the blue histogram, while the distribution

of the Granger causality from the MTL approach is depicted by the

orange one. The orange histogram is shifted to the right, showing

the large ability of the MTL model to reveal Granger causality

between climate and vegetation. Overall, the results presented in

this section highlight the potential of using the low-dimensional

feature representation learned from the data in enhancing causal

inference in climate data.

3.2 Dimensionality of the shared feature space
The value of the parameter h in the ASO-MTL method is the di-

mensionality of the common feature space. We experimented with

a wide range of values for h in a validation set, aiming to select

http://www.sat-ex.ugent.be/data.php
https://github.com/lhwm/hydro-climatic-biomes
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Figure 2: Comparison of the predictive performance between the STL and the MTL approaches. (a) Explained variance (R2)
of the NDVI monthly anomalies based on the MTL approach. (b) Difference in terms of R2 between the MTL and the STL
approaches; blue regions indicate a higher performance by the MTL. (c) Comparison of the distributions of the R2 scores
in the STL and in the MTL setting; the blue histogram corresponds to the STL, and the orange one to the MTL approach.
(d) Quantification of Granger causality for the MTL approach, i.e. improvement in terms of R2 by the full MTL model with
respect to the R2 of the baselineMTLmodel that uses only past values of NDVI anomalies as predictors; positive values indicate
Granger causality [19]. (e) Difference in terms of Granger causality between the MTL and the STL approaches; blue regions
indicate a higher performance by the MTL. (f) Comparison of the distributions of the Granger causality in the STL and in the
MTL setting; the blue histogram corresponds to the STL, and the orange one to the MTL approach.

the value of h that maximises the model performance in terms of

R2. Figure 3 shows the median of the predictive performances (R2)
for all tasks when the value of the parameter h varies. Note that

for these experiments, the λ parameters remain constant in order

to assess only the way that the parameter h affects the model per-

formance. As one can observe in Fig. 3, the maximum median R2

overall tasks is achieved when the h parameter equals 11. However,

the differences in the median of the predictive performance for

h = 6, ..., 15 are marginal. Therefore, we can conclude that the

method gives quite robust results since the strongest predictive

structures are captured for the first most important components

given by the singular value decomposition.
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Figure 3: Tuning of the h parameter: Median of the predic-
tive performance of the ASO-MTL model in terms of R2

when the value of the h parameter varies. For h = 11 the
model scores the maximum value of R2. However, the dif-
ferences in the predictive performance for h = 6, ..., 15 are
marginal.

3.3 Visualization of the most important
predictive structures

In Sect. 2.4, we describe the steps of the SVD-based ASO algorithm,

which learns a low-dimensional feature representation for our tasks

based on the relationships between them. The learned matrix Θ
maps the high-dimensional space to a (lower) h-dimensional space,

storing the loads of the original weights to the “highly predictive

structures”. Thus, the task models are also projected to this shared

lower-dimensional space. This information is stored in the matrix

V. Figure 4 presents the values of the tasks in the first 6 components

of the matrix V. Similar pixel values to the same components mean

similar climate–vegetation dynamics. There are several remarks

considering Fig. 4: (i) all the 6 components are able to distinguish

specific regions according to different criteria such as regions with

temperate and dry climate, regions with cold and dry climate, trop-

ical and dry climate, etc.; (ii) pixels can be grouped into broad

regions with similar values in a particular predictive structure, (iii)

the differences in the values across regions are intense, and in some

cases one can recognize the boundaries between regions, and (iv)

there are also remote regions which tend to have similar climate–

vegetation interactions. For an extension of these findings and an

in-depth interpretation of the results we direct the reader to [20].

4 CONCLUSIONS
In this paper, we introduced a novel Granger-causality framework

based on multi-task learning. Specifically, our framework combines

a multi-task learning (MTL) modelling approach, applied to a global

database of global observational climate records, and causal infer-

ence. Comparisons to a typical single-task learning approach, in

which each task (in each location) is analysed separately, indicate

that learning about climate–vegetation relationships in neighbour-

ing, or even remote, locations is beneficial in predicting local vege-

tation dynamics based on climate. Moreover, our approach is able to

detect shared hidden predictive structures among the tasks that im-

prove the predictive performance of the models, and thus enhance

causal inference in climate sciences. For a more detailed analysis

and interpretation of the results we refer the reader to [20].
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