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ABSTRACT
We consider the problem of separating error messages generated

in large distributed data center networks into error events. In such

networks, each error event leads to a stream of messages generated

by hardware and so�ware components a�ected by the event. �ese

messages are stored in a giant message log. We consider the unsu-

pervised learning problem of identifying the signatures of events

that generated these messages; here, the signature of an error event

refers to the mixture of messages generated by the event. One

of the main contributions of the paper is a novel mapping of our

problem which transforms it into a problem of topic discovery in

documents. Events in our problem correspond to topics and mes-

sages in our problem correspond to words in the topic discovery

problem. However, there is no direct analog of documents in our

problem. �erefore, we use a non-parametric change-point detec-

tion algorithm, which has linear computational complexity in the

number of messages, to divide the message log into smaller subsets

called episodes, which serve as the equivalents of documents. A�er

this mapping has been done, we use a well-known algorithm for

topic discovery, called LDA, to solve our problem. We theoretically

analyze the change-point detection algorithm, and show that it is

consistent and has low sample complexity. We demonstrate the

scalability of our algorithm (change-point detection and LDA to-

gether) on a real dataset consisting of 97 million messages collected

over a period of 15 days, from a distributed data center network

which supports the operations of a large wireless service provider.

KEYWORDS
Unsupervised Learning; Data Mining; Event Message Log; Change

Point Detection; Bayesian Inference; Data center Networks

1 INTRODUCTION
�e delivery of modern data and web-based services requires the

execution of a chain of network functions at di�erent elements

in distributed data-centers. �is is true for video-based services,

gaming services, cellular data/voice services, etc., each of which
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requires processing from multiple coupled networked entities host-

ing di�erent network functions. For example, modern wireless

networks rely on servers and virtual machines (VM) residing in

distributed data centers to establish voice calls or data sessions,

authenticate users, check user compliance with monthly voice/data

limits, verify if users have paid their monthly bills, add to users’

bills for extra services, etc., all of which are done before completing

a call. E�cient management and operations of these services is

of paramount importance as networks grow increasingly complex

with the advent of technologies like virtualization and 5G. An inte-

gral component of network management is the ability to identify

and understand error events, when failures occur in the hardware

and/or so�ware components of the network. However, the complex

interdependence between coupled networking functions poses a

signi�cant challenge in characterizing an error event due to the fact

that error messages can be generated in network elements beyond

the actual source of error. In this paper, we are interested in the

problem of mining latent error event information from messages

generated by servers, VMs, base stations, routers, and links in large-

scale distributed data center networks. While our methodology is

broadly applicable to any type of data center network, we validate

our algorithms by applying them to a large data set provided by a

major wireless network service provider, so we will occasionally

use terminology speci�c to this application to motivate our problem

and solution methodology.

In most operational networks, all messages and alarms from

distributed network elements are logged with time stamps into a

massive central message log. While mining error logs have been

studied extensively in di�erent contexts, (see [10, 11] for excellent

surveys; also see Section 1.2), there are some fundamental di�er-

ences in our se�ing. �e key challenge stems from the fact that

modern data center and communication networks consist of com-

ponents bought from di�erent vendors, and each component is

designed to generate an error message when it cannot execute a

job. �e following example provides an illustration.

Motivating Example: Suppose Alice makes a cellphone call to

Bob. �is call is �rst routed through a base station which is a�ached

to a data center verifying the caller credentials. If Alice is not at her

home location, a VM at this data center must contact a database at

her home location to verify her credentials. Once the credentials

are veri�ed, the caller’s cellular base station connects to the base

station near Bob through a complicated network spanning many

geographical locations. Consider two potential error scenarios: (i)

an error occurs at a router in the path from Bob to Alice’s base

station, (ii) error at a router connecting the data centers verifying

the caller’s credentials. In either scenario, the call will fail to be
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established leading to the generation of error messages not only

at the failed routers but also at network functions (implemented

in a cluster of VMs) responsible for call establishment. Further-

more, if the error leads to additional call failures, then respective

base-stations could send alarms indicating higher than normal call

failures.

Indeed, the source, timing, and message-components of the error

are all latent. �e goal of this paper is to mine event signatures

(i.e., distribution of messages for each event) and event occurrences

(i.e., the begin and the end time of each event) from the message

log. Based on the motivating example, we now note the following

fundamental characteristics which make our error event mining

problem challenging:

• In our se�ing, the source of an error is usually not known and

thus a log-message generated by an element could be due to

failure of some other network element. For example, when the

link between an authentication server and the network core fails,

this could lead to call establishment failures which are logged by

network functions responsible for call establishment. Further-

more, the same type of error log-message could be generated due

to many di�erent errors. From a data modeling point of view,

each (latent) event can be viewed as a probabilistic-mixture of

multiple log-messages at di�erent elements and also, the set of

log messages generated by di�erent events could have non-zero

intersection.

• Each error event can produce a sequence of messages, including

the same type of message multiple times, and the temporal order

between distinct messages from the same event could vary based

on the latency between network elements, network-load, co-

occurrence of other uncorrelated events, etc. �us, the temporal

pa�ern of messages may also contain useful information for

our purpose. In our model, the message occurrence times are

modeled as a stochastic process.

• All the messages generated in the network are stored in a central-

ized log. �ese messages could correspond to multiple simulta-

neous events without any further information on the start-time

and end-time of each event.

• An additional challenge arises from the fact that network topol-

ogy information is unknown, because modern networks are very

complicated and are constantly evolving due to the churn (ad-

dition or deletion) of routers and switches. �ird-party vendor

so�ware and hardware have no way of providing information to

localize and understand the errors. �us, topological information

cannot be used for event mining purposes.

�e practical novelty of our work comes from modeling for all of

the above factors and proposing scalable algorithms that learns

the latent event signatures (the notion of signature will be made

precise later) along with their occurrence times.

Remark 1. We note that, in di�erent works on event mining

(see Section 1.2), the concept of event is di�erent depending on the

problem-context. It could either mean semantic-event or message

template, or a cluster of such templates, or in some cases event itself

is equivalent to message (where tagged event streams are available)

or a transaction/system-event. In our work, an event simply refers

to a real-world occurrence of an a fault/incident somewhere in

the distributed/networking system such that each event leads to a

generation of error messages at multiple network elements.

1.1 Contributions
We model each event as a probabilistic mixture of messages from

di�erent sources. In other words, the probability distribution over

messages characterizes an event, and thus acts as the signature

of the event. Each event also has a start/end time and several

messages can be generated during the occurrence of an event. We

only observe the messages and their time-stamps while the event

signatures and duration window is unknown; also there could be

multiple simultaneous events occurring in the network. Given this

se�ing, we study the following unsupervised learning problem:

given collection of time-stamped log-messages, learn the latent event
signatures and event start/end times. �e main contributions of the

paper are as follows:

• Novel algorithmic framework: We present a novel way of decom-

posing the problem into simpler sub-problems. Our method,

which we will call CD-LDA, decomposes the problem into two

parts: the �rst part consists of a change-point detection algo-

rithm which identi�es time instants at which either a new event

starts in the network or an existing event comes to an end, and,

the second part of the algorithm uses Latent Dirichlet Algorithm

(LDA) (see [2]) to classify messages into events. �is observation

that one can use change-point detection, followed by LDA, for

event classi�cation is one of the novel ideas in the paper.

• Scalable change-point detection: While the details of the LDA

algorithm itself are standard, non-parametric change-point de-

tection as we have used in this paper is not as well studied. We

adapt an idea from [16] to design an O(n) algorithm where n is

the number of messages in the message log. �e corresponding

computational complexity in [16] is O(n2). Also, since the mes-

sages in [16] are real-valued it is not clear how to directly apply

the results of [16] to our case where the messages are categorical

in nature. �e key insight for achieving linear complexity is that,

an easy to compute distance measure, namely total-variation

(TV) distance, can be used to detect changes in message dis-

tribution due to an event. Since we are dealing with millions

of messages, the linear complexity of change-point detection

is critical to making our algorithm useful in practice. We also

analyze the sample complexity of (i.e, the number of samples

required to detect change points with a high-degree of accuracy)

of our change-point detection algorithm using the method of

types and Pinsker’s inequality from information theory. To the

best of our knowledge, no such sample complexity results exist

for the algorithm in [16].

• Experimental validation: We use two di�erent real-word data

sets from a large operational network to perform the following

validation of our approach. First, we compare our algorithm

to two existing approaches adapted to our se�ing: a Bayesian

inference-based algorithm and Graph-based clustering algorithm.

We show the bene�ts of our approach compared to these methods

in terms of scalability and performance, by applying it to small

samples extracted from a large data set consisting of 97 million

messages. Second, we validate our method against two real world

events by comparing the event signature learned by our method

with event signature manually inferred by domain experts in a

smaller data set consisting of 700K messages
1
. Finally, we also

1
Note that manual inference of event signatures is not scalable; we did this for the

purpose of validation.
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show results to indicate scalability of our method by applying to

the entire 97 million message data set.

1.2 Context and Related Work
Data-driven techniques have been shown to be very useful in ex-

tracting meaningful information out of system-logs and alarms for

large and complex systems. �e primary goal of this “knowledge”

extraction is to assist in diagnosing the underlying problems re-

sponsible for log-messages and events. Two excellent resources

for the large body of work done in the area are [10, 11]. Next, we

outline some of the key challenges in this knowledge extraction,

associated research in the area, and our problem in the context of

existing work.

Mining and clustering unstructured logs: Log-messages are

unstructured textual data without any annotation for the under-

lying fault. A signi�cant amount of research has focused on con-

verting unstructured logs to common semantic events [11]. Note

that the notion of semantic events is di�erent from the actual real-

world events responsible for generating the messages, nevertheless,

such a conversion helps in providing a canonical description of the

log-messages that enables subsequent correlation analysis . �ese

works exploit the structural similarity among di�erent messages

to either compute an intelligent log-parser or cluster the messages

based on message texts [9, 11, 13, 20]. Each cluster can be viewed

as an semantic event which can help in diagnosing the underly-

ing root-cause. Our se�ing is somewhat di�erent, as events are

messages-distributions from di�erent elements with certain start

and end times; the messages belonging to an event and the associ-

ated event time-window are hidden (to be learned). A more recent

work [26] develops algorithms to mine underlying structural-event

as a work-�ow graph. �e main di�erences are that, each transac-

tion is a �xed sequence of messages unlike our se�ing where each

message could be generated multiple times based on some hidden

stochastic process, and furthermore, in our se�ing, there could be

multiple events manifested in the centralized log-server.

Mining temporal patterns: Log-messages are time-series data

and thus the temporal pa�erns contain useful information. Consid-

erable amount of research has gone into learning latent pa�erns,

trends and relationship between events based on timing informa-

tion in the messages [1, 3, 27]. We refer to [11, 14, 18] for survey

of these approaches. Extracted event-pa�erns could be used to

construct event correlation graphs that could be mined using tech-

niques such as graph-clustering. Speci�cally, these approaches are

useful when event-streams are available as time-series. We are

interested in scenarios where each event is manifested in terms

of time-series of unstructured messages and furthermore, same

message could arise from multiple events. Nevertheless, certain

techniques developed for temporal event mining could be adapted

to our se�ing as we describe in Section 4.1.2; our results indicate

that such an adaptation works well under certain conditions. Note

that, our goal is to also the learn the event-occurrence times.

Event-summarization: In large dynamic systems, messages

could be generated from multiple components due to reasons rang-

ing from so�ware bugs, system faults, operational activities, se-

curity alerts etc. �us it is very useful to have a global summa-

rized snapshot of messages based on logs. Most works in this

area exploit the inter-arrival distribution and co-occurrence of

events [7, 11, 15, 21, 24] to produce summarized correlation be-

tween events. �ese methods are useful when the event-stream

is available and possible event-types are known in advance. �is

limits the applicability to large-systems like ours where event types

are unknown along with their generation time-window.

�e body of work closest to out work are the works on event-

summarization. However, there are some fundamental di�erences

in our system: (i) we do not have a readily available event-stream,

instead, our observables are log-messages, (ii) the event-types are

latent variables not known in advance and all we observe are mes-

sage streams, (iii) the time-boundaries of di�erent latent-events is a

learning objective, and (iv) since we are dealing with large system

with multiple components where di�erent fault-types are corre-

lated, the same message could be generated for di�erent root-causes

(real-world events).

2 PROBLEM STATEMENT AND
PRELIMINARIES

Figure 1: Figure showing the machine-learning pipeline.
Our main contribution is in “Latent Event Learner” module,
speci�cally proposing the CD-LDA algorithm.

We are given a data set D consisting of messages generated by

error events in a large distributed data-center network. We assume

that the messages are generated in the time interval [0,T ].�e set

of messages in the data set come from discrete and �nite setM .

Note that, for the purpose of developing our methods, each message

need not be raw-text; it could either be templates extracted out of

raw textual messages using techniques described in [11], or some

alarm id. In fact, converting the raw-textual messages to templates

is an important pre-processing step in our experimental set-up (see

[17]). For the purpose of developing and analyzing our algorithms,

we use the term message to mean either a template extracted from

a message or an alarm-id. Each message has a timestamp associated

with it, which indicates when the message was generated. Suppose

that an event e started occurring at time Se and �nished at time

Fe . In the interval of time [Se , Fe ], event e will generate a mixture

of messages from a subset ofM, which we will denote byMe . In

general, an event can occur multiple times in the data set. If an

event e occurs multiple times in the data set, then each occurrence

of the event will have start and �nish times associated with it.

An event e is characterized by its message setMe and the proba-

bility distribution with which messages are chosen fromMe ,which

we will denote by p(e), i.e., p
(e)
m denotes the probability that event

e will generate a message m ∈ Me . For compactness of notation,

one can simply think of p(e) as being de�ned over the entire set of

messagesM, with p
(e)
m = 0 if m <Me .�us, p(e) fully character-

izes the event e and can be viewed as the signature of the event. We
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assume that the support set of messages for two di�erent events

are not identical.

It is important to note that the data set simply consists of mes-

sages from the setM; there is no explicit information about the

events in the data set, i.e., the event information is latent. �e goal

of the paper is to solve the following inference problem: from the

given data set D, identify the set of events that generated the mes-

sages in the data set, and for each instance of event, identify when

it started and �nished. In other words, the output of the inference

algorithm should contain the following information:

• �e number of E events which generated the data set.

• �e signatures of these events: p(1),p(2), . . . ,p(E).
• For each event e ∈ {1, 2, . . . ,E}, the number of times it

occurred in the data set and, for each occurrence, its start

and �nish times.

Notation: We use the notation Xi ∈ M, for the ith mes-

sage. Also, let ti be the timestamp associated with the ith

message. �us the data set D can be characterized by tuples

(X1, t1), (X2, t2), . . . (Xn , tn ) of n data points.

Machine-learning pipeline: In Figure 1, we show the machine-

learning pipeline for completeness. �is paper focuses on the mod-

ule “Latent Event Learner” which has data-processing step followed

by the key proposed algorithm in the paper, namely CD-LDA al-

gorithm which we describe in Section 3. In the real data set to

which we applied our algorithm, there are two types of messages

generated by an event: one is called syslog text and the other called

an alarm. Syslog texts require more pre-processing while alarms

do not. We have shown the two types of messages in the pipeline

�gure, but for the purposes for developing an algorithm, in the

rest of the paper, we only refer to messages without distinguishing

between them.

3 ALGORITHM CD-LDA
We now present our solution to this problem which we call CD-

LDA (Change-point Detection-Latent Dirichlet Analysis). �e key

novelty in the paper is the connection that we identify between

event identi�cation in our problem and topic modeling in large

document data sets, a problem that has been widely studied in the

natural language processing literature. In particular, we process our

data set into a form that allows us to use a widely-used algorithm

called LDA to solve our problem. In standard LDA, we are given

multiple documents, with many words in each document. �e

goal is to identify the mixture of latent topics that generated the

documents, where each topic is identi�ed with a collection of words

and a probability distribution over the words. Our data set has

similar features: we have events (which are the equivalents of

topics) and messages (which are the equivalents of words) which

are generated by the events. However, we do not have a concept

of documents. A key idea in our paper is to divide the data set

into smaller data sets, each of which will be called an episode.

�e episodes will be the equivalents of documents in our problem.

We do this using a technique called non-parametric change-point

detection.

Now we describe the concept of an episode. An episode is an

interval of time over which the same set of events occur, and at time

instants on either side of the interval, the set of events that occur

are di�erent from the set of events in the episode. �us, we can

divide our data set of events such that no two consecutive episodes

have the same set of events. We present an example to clarify the

concept of an episode. Suppose the duration of the message data

setT = 10. Suppose event 1 occurred from time 0 to time 5, event 2

occurred from time 4 to time 8, and event 3 occurred from time 5

to time 10.�en there are four episodes in this data set: one in the

time interval [0, 4] where only one event occurs, one in the time

interval [4, 5] where events 1, 2 occur, one in the time interval [5, 8]

where events 2, 3 occur and �nally one in [8, 10] where only event

3 occurs. We assume that between successive episodes, at most one

new event starts or one existing event ends.

We use change-point detection to identify episodes. To under-

stand how the change-point detection algorithm works, we �rst

summarize the characteristics of an episode:

• An episode consists of a mixture of events, and each event

consists of a mixture of messages.

• Since neighboring episodes consist of di�erent mixtures

of events, neighboring episodes also contain di�erent mix-

tures of messages (due to our assumption that di�erent

events do not generate the same set of messages).

• �us, successive episodes contain di�erent message dis-

tributions and therefore, the time instances where these

distributions change are the episode boundaries, which we

will call change points.
• In our data set, the messages contain time stamps. In gen-

eral, the inter-arrival time distributions of messages are

di�erent in successive episodes, due to the fact that the

episodes represent di�erent mixtures of events. �is fact

can be further exploited to improve the identi�cation of

change points.

Based on our discussion so far in this section, CD-LDA has two-

phases as follows:

(1) Change-point detection: In this phase, we detect the start and

end time of each episode. In other words, we identify the time-

points where a new event started or an existing event ended.

�is phase is described in detail in Section 3.1.

(2) Applying LDA: In this phase, we show that, once episodes are

known, LDA based techniques can be used to solve the prob-

lem of computing message distribution for each event. Subse-

quently, we can also infer the occurrence times for each event.

�is phase along with the complete algorithm is described in

Section 3.2.

3.1 Change-point Detection
Suppose we have n data points and a known number of change

points k . �e data points between two consecutive change points

are drawn i.i.d from the same distribution. In the inference problem,

each data point could be a possible change point. A naive exhaustive

search to �nd the k best locations would have a computational

complexity of O(nk ). Nonparametric approaches to change-point

detection aim to solve this problem with much lower complexity

even when the number of change points is unknown and there are

few assumptions on the family of distributions, [8], [16],[12].

�e change point detection algorithm we use is hierarchical

in nature. �is is inspired by the work in [16]. Nevertheless our
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algorithm has certain key di�erences as discussed in section 3.3.1.

It is easier to understand the algorithm in the se�ing of only one

change point, i.e., two episodes. Suppose that τ is a candidate

change point among the n points. �e idea is to measure the change

in distribution between the points to the le� and right of τ . We

use the TV distance (i.e. L1 distance between two distributions)

between the empirical distributions estimated from the points to

the le� and right of the candidate change point τ . �is is maximized

over all values of τ to estimate the location of the change point. If

the distributions are su�ciently di�erent in the two episodes the

TV distance between the empirical distributions is expected to be

highest for the correct location of the change point in comparison

to any other candidate point τ (we rigorously prove this in the

proof �eorem 3.1, 3.3).

Further, we also have di�erent inter-arrival times for messages

in di�erent episodes. Hence we use a combination of TV distance

and mean inter-arrival time as the metric to di�erentiate the two

distributions. We denote this metric by D̂(τ ).

D̂(τ ) = ‖p̂L(τ ) − p̂R (τ )‖1 + |ÊSL(τ ) − ÊSR (τ )|, (1)

where p̂L(τ ), p̂R (τ ) are empirical estimates of message distributions

to the le� and right τ and ÊSL(τ ), ÊSR (τ ) are empirical estimates

of the mean inter-arrival time to the le� and right of τ , respectively.

Algorithm 1 describes the algorithm in the one change point case.

To make the algorithm more robust, we declare a change point only

when the episode length is at least αn and the maximum value of

the metric (1) is at least δ .

Let us consider a simple example to illustrate the idea of change-

point detection with one change-point. Suppose we have a sequence

of messages with unequal inter-arrival times as shown in Fig. 2.

All the messages are the same, but the �rst half of the messages

arrive at a rate higher than the second half of the messages. In

this scenario, our metric reduces to the di�erence in the mean

inter-arrival times between the two episodes.

Figure 2: Example change point with two episodes

Next, we consider the case of multiple change points. When we

have multiple change points, we apply Algorithm 1 hierarchically

until we cannot �nd a change point. Algorithm 2 CD(D,α ,δ ) is

presented below.

�e above algorithm tries to detect a single change point �rst,

and if such a change point is found, it divides the data set into two

parts, one consisting of messages to the le� of the change point and

the other consisting of messages to the right of the change point.

�e single change-point detection algorithm is now applied to each

Algorithm 1 Change point detection with one change point

1: Input: parameter δ > 0,α > 0.

2: Output: changept denoting whether a change point exists and

the location of the change point τ .

3: Find τ ∈ arg maxl D̂(l)

4: if D̂(τ ) > δ and αn < τ < 1 − αn then
5: return chanдept = 1, τ .

6: else
7: return chanдept = 0.

Algorithm 2 CD(D,α ,δ )

1: Input: data points D, minimum value of TV distance δ , mini-

mum episode length α .

2: Output: Change points τ1, . . . ,τk .

3: Run FindChangept(1,n).
4: procedure FindChangept(L,H )

5: changept, τ ← Algorithm 1 (XL ,XL+1, . . . ,XH ,α ,δ ).

6: if changept exists then
7: τl ← FindChangept(L,τ ),
8: τh ← FindChangept(τ ,H ).
9: return {τl ,τ ,τh }

10: else
11: return

of the two smaller datasets. �is is repeated recursively till no more

change points are detected.

3.2 Latent Dirichlet Allocation
In the problem considered in this paper, each episode can be thought

of as a document and each message can be thought of as a word.

Like in the LDA model where each topic is latent, in our prob-

lem, each event is latent and can be thought of as a distribution

over messages. Unlike LDA-based document modeling, we have

time-stamps associated with messages, which we have already used

to extract episodes from our data set. Additionally, this temporal

information can also be used in a Bayesian inference formulation

to extract events and their signatures. However, to make the algo-

rithm simple and computationally tractable, as in the original LDA

model, we assume that there is no temporal ordering to the episodes

or messages within the episodes. Our experiments suggest that

this choice is reasonable and leads to very good practical results.

However, one can potentially use the temporal information too as

in [22, 25], and this is le� for future work.

If we apply the LDA algorithm to our episodes, the output will

be the event signatures p(e) and episode signatures θ (E), where an

episode signature is a probability distribution of the events in the

episode. In other words, LDA assumes that each message in an

episode is generated by �rst picking an event within an episode

from the episode signature and then picking a message from the

event based on the event signature. In order to perform this infer-

ence of event and episode signatures using LDA, many inference

techniques exist: Gibbs sampling [4], variational inference [2], on-

line variational inference [5], stochastic variational inference [6].

We use the Gibbs sampling approach from [4].
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For our event mining problem, we are interested in event signa-

tures and �nding the start and �nish times of each occurrence of

an event. �erefore, the �nal step (which we describe next) is to

extract the start and �nish times from the episode signatures.

Putting it all together: In order to detect all the episodes in

which the event e occurs prominently, we proceed as follows. We

collect all episodes E for which the event occurrence probability

θ
(E)
e is greater than a certain threshold η > 0. We declare the start

and �nish times of the collected episodes as the start and �nish

times of the various occurrences of the event e . If an event spans

many contiguous episodes, then the start time of the �rst episode

and the end time of the last contiguous episode can be used as the

start and �nish time of this occurrence of the event. However, for

simplicity, this straightforward step in not presented in the detailed

description of the algorithm in Algorithm 3.

Algorithm 3 CD-LDA(D,α ,δ ,η)

1: Input: data points D, threshold of occurrence of an event in

an episode η, the minimum value of TV distance δ , minimum

episode length α .

2: Output: Event signatures p(1),p(2), . . . ,p(E), Start and �nish

time Se , Fe for each event e .

3: Change points τ1, . . . ,τk ← CD(D,α ,δ ). Episode Ei ←

{Xτi−1
, . . . ,Xτi } for i = 1 to k + 1.

4: p(1), . . . ,p(E);θ (E1), . . . ,θ (Ek+1
) ←LDA(E1, . . . ,Ek+1

)

5: Consider event e . Ge ← Set of all episodes E such that θ
(E)
e > η.

Se , Fe ← start and �nish times of all episodes in set Ge .

Note that the LDA algorithm requires an input for the number

of events E. However, one can run LDA for di�erent values of E
and choose the one with maximum likelihood [2]. Hence E need

not be assumed to be an input to CD-LDA. One can also use the

Hierarchical Dirichlet Process (HDP) algorithm [23] which is an

extension of LDA and �gure out the number of topics from the data.

In our experiments, we use the maximum likelihood approach to

estimate the number of events.

3.3 Analysis of CD
As mentioned earlier, the novelty in the CD-LDA algorithm lies in

the connection we make to topic modeling in document analysis.

In this context, our key contribution is an e�cient algorithm to

divide the data set of messages into episodes (documents). Once

this is done, the application of the LDA of episodes (documents),

consisting of messages (words) generated by events (topics) is stan-

dard. �erefore, the correctness and e�ciency of the CD part of the

algorithm will determine the correctness and e�ciency of CD-LDA

as a whole. We focus on analyzing the CD part of the algorithm

in this section. Due to space limitations, we only present the main

results here, and the proofs can be found in [17].

Section 3.3.1 shows that the computational complexity of CD

algorithm is linear in the number of data points. Section 3.3.2

contains the asymptotic analysis of the CD algorithm while section

3.3.3 has the �nite sample results.

3.3.1 Computational complexity of CD. In this section we dis-

cuss the computational complexities of Algorithm 1 and Algorithm

2. We will �rst discuss the computational complexity of detecting a

change point in case of one change point. Algorithm 1 requires us

to compute arg maxl D̂(l) for 1 ≤ l ≤ n. From the de�nition of D̂(l)
in (1), we only need to compute the empirical probability estimates

p̂L(l), p̂R (l), and the empirical mean of the inter arrival time ÊSL(l),

ÊSR (l) for every value of l between 1 to n.

We focus on the computation of p̂L(l), p̂R (l). Consider any mes-

sage m in the distribution. For each m, we can compute p̂L,m (l),
p̂R,m (l) in O(n) for every value of l by using neighbouring values

of p̂L,m (l − 1), p̂R,m (l − 1).

p̂L,m (l) =
(l − 1)p̂L,m (l − 1) + 1{Xl−1

=m}

l
,

p̂R,m (l) =
(n − l + 1)p̂R,m (l − 1) − 1{Xl−1

=m}

n − l
(2)

�e computation of ÊSL(l), ÊSR (l) for every value of l from 1 to n
is similar.

Performing the above computations for all M messages, results

in a computational complexity of O(nM). In the case of k change

points, it is straightforward to see that we requireO(nMk) computa-

tions. In much of our discussion, we assume M and k are constants

and therefore, we present the computational complexity results in

terms of n only.

Relatedwork: Algorithm 2 executes the process of determining

change points hierarchically. �is ideas was inspired by the work

in [16]. However, the metric D̂ we use to detect change points is

di�erent from that of [16]. �e metric used in [16] leads to anO(n2)

computational complexity. �e change in metric necessitates a new

analysis of the consistency of the CD algorithm which we present

in the next subsection. Further, for our metric, we are also able

to derive sample complexity results which are presented in a later

subsection.

3.3.2 The consistency of change-point detection. In this section

we discuss the consistency of the change-point detection algorithm,

i.e., when the number of data points n goes to in�nity one can

accurately detect the location of the change points. In both this

subsection and the next, we assume that the inter-arrival times of

messages within each episode are i.i.d., and are independent (with

possibly di�erent distributions) across episodes.

Theorem 3.1. For γ̃ ∈ (0, 1), D (̃γ ) = limn→∞ D̂ (̃γn) is well-
de�ned and D (̃γ ) a�ains its maximum at one of the change points if
there is at least one change point.

�e proof of the above theorem is easy when there is only one

change point. To study the case of multiple change points, [16] ex-

ploits the fact that their metric for change-point detection is convex

between change points. However, the TV distance we use is not

convex between two change points. But we work around this prob-

lem in the proof of �eorem 3.1 by showing that D (̃γ ) is increasing

to the le� of the �rst change point, unimodal/increasing/decreasing

between any two change points and decreasing to the right of

the last change point. Hence, any global maximum of D (̃γ ) for

0 < γ̃ < 1 is located at a change point.

3.3.3 The sample complexity of change-point detection. In the

previous subsection, we studied the CD algorithm in the limit as

n →∞. In this section, we analyze the algorithm when there are
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only a �nite number of samples. For this purpose, we assume that

the inter-arrival distribution of messages have sub-Gaussian tails.

We say that Algorithm CD is correct if the following conditions

are satis�ed. Let ϵ > 0 be a desired accuracy in estimation of the

change point.

De�nition 3.2. Given ϵ > 0, Algorithm CD is correct if

• there are change points 0 < τ1

n = γ1, . . . ,
τk
n = γk < 1 and

the algorithm gives γ̂1, . . . , γ̂k such that maxi |γ̂i −γi | < ϵ .

• there is no change point and D̂(γn) < δ ,∀γ ∈ {γ1, . . . ,γk }.

Now we can state the correctness theorem for Algorithm 2. �e

sample complexity is shown to scale logarithmically with the num-

ber of change points.

Theorem 3.3. Algorithm 2 is correct in the sense of De�nition 3.2
with probability (1 − β) if

n = Ω
©­­«max

©­­«
log

(
2k+1

β

)
ϵ2

,
M1+c

ϵ2(1+c)

ª®®¬
ª®®¬ ,

for su�ciently small α , δ , ϵ and for any c > 0.

�e proof of this theorem uses the method of types and Pinsker’s

inequality [17].

4 EVALUATIONWITH REAL DATASETS
We now present our experimental results with real data sets from

large operational network. �e purpose of experiments is three-fold.

First, we wish to compare our proposed CD-LDA algorithm with

other techniques proposed (adapted to our se�ing) in the literature.

Second, we want to validate our results against manual expert-

derived event signature for a prominent event. �ird, we want to

understand the scalability of our method with respect to very large

data sets.

Datasets used: We use two data sets: one from a legacy network

of physical elements like routers, switches etc., and another from a

recently deployed virtual network function (VNF).

• Dataset-1: �is data set consists of around 97 million raw sys-

log messages collected from 3500 distinct physical network

elements (mostly routers) from a nationwide operational net-

work over a 15-day period in 2017.

• Dataset-2: �e second data set consists of around 728, 000

messages collected from 285 distinct physical/virtual network

elements over a 3 month period from a newly deployed virtual
network function (VNF) which is implemented on a data-center

using multiple VMs.

Before we can apply our algorithms to these data sets, a number of

preprocessing steps have to be performed. Due to space limitations,

these steps are not discussed here, but the interested reader can

�nd them in [17].

4.1 Benchmark Algorithms
We compare CD-LDA with the following algorithms.

4.1.1 Algorithm B: A Bayesian inference based algorithm. We

consider a fully Bayesian inference algorithm to solve the problem.

A Bayesian inference algorithm requires some assumptions on the

statistical generative model by which the messages are generated.

Our model here is inspired by topic modelling with time stamped

documents [25]. In our model, a message and its time stamp are

chosen as follows: an event is chosen from a distribution over event

types. A message is chosen according to a message distribution

given the event. Each event is associated with a beta distribution

which generates the time stamp for the message. Further details

can be found in [17].

�ere are two key di�erences between Algorithm B and pro-

posed CD-LDA. CD-LDA �rst breaks up the datasets into smaller

episodes whereas Algrothm-B models each message as an episode

and uses prior distributions to model the fact that di�erent events

happen at di�erent times. We show that, such an algorithm works,

but the inference procedure is dramatically slow due to additional

parameters to infer.

4.1.2 Algorithm C: A Graph-clustering based algorithm. For the

purposes of comparison, we will also consider a very simple graph-

based clustering-based algorithm to identify events. �is algorithm

is inspired from graph based clustering used in event log data in

[19]. �e basic idea behind the algorithm is as follows: we construct

a graph whose nodes are the messages in the setM . We divide

the continuous time interval [0,T ] into T /w timeslots, where each

timeslot is of duration w . For simplicity, we will assume that T is

divisible byw .We draw an edge between a pair of nodes (messages)

and label the edge by a distance metric between the messages,

which roughly indicates the likelihood with which two messages

are generated by the same event. �en, any standard distance-based

clustering algorithm on the graphs will cluster the messages into

clusters, and one can interpret each cluster as an event. Clearly, the

algorithm has the following major limitation: it can detectMe for

an event e and not p(e). In some applications, this may be su�cient.

�erefore, we consider this simple algorithm as a possible candidate

algorithm for our real data set.

We now describe how the similarity metric is computed for two

nodes i and j . Let Ni be the number of timeslots during which a

message i occurs and let Ni j be the number of timeslots during

which both i and j appear in the same timeslot. �en, the distance

metric between nodes i and j is de�ned as

ρi j = 1 −
Ni j

Ni + Nj − Ni j
.

�us, a smaller ρi j indicates that i and j co-occur frequently. �e

idea behind choosing this metric is as follows: messages generated

by the same event are likely to occur closer together in time. �us,

ρi j being small indicates that the messages are more likely to have

been generated by the same event, and thus are closer together in

distance.

4.2 Results: Comparison with Benchmark
Algorithms

For the purposes of this section only, we consider a smaller slice

of data from Dataset-1. Instead of considering all the 97 million

messages, we take a small slice of 10,000 messages over a 3 hour

duration from 135 distinct routers. Let us call this data set Ds .

�ere are two reasons for considering this smaller slice. Firstly, it is

much easier to visually compare the results from di�erent methods



MiLeTS ’18, August 2018, London, United Kingdom Siddhartha Satpathi, Supratim Deb, R Srikant, and He Yan

(a) (b)

Figure 3: Le� panel shows scatter plot of di�erent message-
ids over the period of comparison and right panel shows the
episodes detected by CD phase of Algorithm CD-LDA.

with a smaller dataset. Since there is no standard metric to compare

the results of the di�erent algorithms, visual comparison allows us

to interpret the results. Secondly, as we show later in this section,

the Bayesian inference Algorithm-B is dramatically slow and so

running it over the full dataset is not feasible. Nevertheless, the

smaller dataset allows us to validate the key premise behind our

main algorithm, i.e., the decomposition of the algorithm into the

CD and LDA parts.

Applying CD-LDA on this dataset slice: Figure 3a shows the

data points in x-axis and the message-ids on y-axis. Figure 3b shows

the 5 episodes a�er the CD part of CD-LDA, where we chose α = 0.1

and δ = 0.5. For the LDA part, instead of specifying the number of

events, we use maximum likelihood to �nd the optimal number of

events and based on this, the number of events was found to be 2.

We next compare event signatures produced by CD-LDA with

Algorithm B and Algorithm C.

CD-LDA versus Algorithm B: For all unknown distributions,

we assume a uniform prior in Algorithm B. Algorithm B is run

with input number of events as 2, 3, 4, 5. It turns out that, with 3

events the algorithm converges to a solution which has maximum

likelihood. However, upon clustering the event signatures p(e)

based on TV-distance between the event signatures, we �nd only

two events. �e maximum TV-distance between the events signatures
found from the two algorithms is 0.068. Hence, we can conclude that

the event signatures found by both the algorithms are very similar.

Despite the fact that Algorithm B using fewer hyper-parameters,

it is not fast enough to run on large data sets. Figure 4a shows

the time taken by CD-LDA and Algorithm B as we increase the

size of the data set from 10, 000 to 40, 000 points. With 40, 000 data

points and 12 events as input Algorithm B takes 3 hours whereas

CD-LDA only takes 26.57 seconds. Clearly, we cannot practically

run Algorithm B on large data sets with millions of points.

CD-LDA versus Algorithm C: In this section we compare CD-

LDA versus algorithm C on data set Ds . Algorithm C can produce

the major event clusters as CD-LDA, but does not provide the start

and end time for the events. We form the co-occurrence graph

for Algorithm C with edge weight as described in section 4.1.2

and nodes as messages which occur more than at least 5 times

in the data set Ds . All the edges with weight more than 0.6 are

discarded and we run a clique detection algorithm in the resulting

graph. We quantitatively compare the event signatureMe of the

top two cliques found by Algorithm C with those found by CD-

LDA. Suppose that message sets identi�ed by Algorithm C for the

Figure 4: Time performance: CD-LDA vs Algrithm B

Event 1 Event 2 . . . Event 8

mmscRuntimeError ISCSI multipath SNMP sshd
SUDBConnectionDown Logmon contrail SNMP crond
SocketConnectionDown VRouter-Vrouter SNMP AgentCheck
SUDBConnectionUp LogFile nova SNMP ntpd
SocketConnectionUp SUDBConnectionDown SNMP CPU
mmscEAIFUnavailable IPMI SNMP Swap
bigipServiceUp bigipServiceDown SNMP Mem
bigipServiceDown bigipServiceUp SNMP Filespace
SNMP Mem HW IPMI Ping vm

Table 1: Events generated by CD-LDA and the constituent
messages in decreasing order of probability. Event 8
matches with expert provided event signature.
two events areMe1 andMe2 respectively. Message sets (messages

with probability more than 0.007) identi�ed by CD-LDA for the

two events are denoted by Se1 and Se2. We can now compute the

Jaccard Index between the two sets.

|Me1 ∩ Se1 |

|Me1 ∪ Se1 |
= 0.73

|Me2 ∩ Se2 |

|Me2 ∪ Se2 |
= 0.68.

Since the full Bayesian inference (Algorithm B) agrees with CD-

LDA closely, we can conclude that Algorithm C gets a large fraction

of the messages associated with the event correctly. However, it

also misses a signi�cant fraction of the messages, and additionally

Algorithm C does not provide any information about start and

end times of the events. Also, the events found are sensitive to

the threshold for choosing the graph edges, something we have

carefully chosen for this small data set.

4.3 Results: Comparison with Expert
Knowledge and Scalability

Validation by comparing with manual event signature: �e

intended use-case of our methodology is for learning events where

the scale of data and system does not allow for manual identi�cation

of event signatures. However, we still wanted to validate our output

against a handful of event signatures inferred manually by domain

experts. For the purpose of this section, we ran CD-LDA for Dataset-

2 which is for an operational VNF. For this data set, an expert had

identi�ed that a known service issue had occurred on two dates:

11-Oct and 26-Nov, 2017. �is event generated messages with Ids

Ping vm, SNMP AgentCheck, SNMP ntpd, SNMP sshd, SNMP crond,

SNMP Swap, SNMP CPU, SNMP Mem, SNMP Filespace.

We ran CD-LDA on this data set with parameters α = 0.01 and

δ = 0.1. We chose 10 events for the LDA phase based on the maxi-

mum likelihood of the output. Table 1 shows the events detected by
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CD-LDA in decreasing order of probability. Also, top 9 messages

are listed for each event. Indeed, we note that Event 8 resembles
the expert provided event. CD-LDA detected this event as having
occurred from 2017-10-08 17:35 to 2017-10-17 15:55 and 2017-11-25
13:45 to 2017-11-26 03:10. �e longer than usual detection window

for 11-Oct is due to the fact that there were other events occur-

ring simultaneously in the network and the Event 8 contributed

to small fraction of messages generated during this time window.

Finally, as shown in Table 1, our method also discovered several

event signatures not previously known.

Scalability: To understand the scalability of CD-LDA with data

size, we ran it on Dataset-1 with about 97 million data points. CD-

LDA was run with the following input: α = 0.01, δ = 0.1, and the

number of events equal to 20.�e CD part of the algorithm detects

57 change points. �e sensitivity of this output with respect to α , δ
is discussed in more detail in [17]. Here, we only mention that the

event signatures are quite robust to these parameter choice, unless

alpha and delta are chosen to be very large, as shown empirically

in [17]. Overall, CD-LDA takes about 6 hours to run, which is quite

reasonable for a dataset of this size. Reducing the running time by

using other methods for implementing LDA, such as variational

inference, is a topic for future work.

5 CONCLUSION
In this paper we look at the problem of detecting events in an error

log generated by a distributed data center network. �e error log

consists of error messages with time stamps. Our goal is to detect la-

tent events which generate these messages and �nd the distribution

of messages for each event. We solve this problem by relating it to

the topic modelling problem in documents. We introduce a notion

of episodes in the time series data which serves as the equivalent of

documents. Also we propose a linear time change detection algo-

rithm to detect these episodes. We present consistency and sample

complexity results for this change detection algorithm. Further we

demonstrate the performance of our algorithm on a real dataset

by comparing it with two benchmark algorithms existing in the

literature.
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