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ABSTRACT
The state of the art in probabilistic demand forecasting [40] min-
imizes Quantile Loss to predict the future demand quantiles for
different horizons. However, since quantiles aren’t additive, in or-
der to predict the total demand for any wider future interval all
required intervals are usually appended to the target vector during
model training. The separate optimization of these overlapping in-
tervals can lead to inconsistent forecasts, i.e. forecasts which imply
an invalid joint distribution between different horizons. As a re-
sult, inter-temporal decision making algorithms that depend on the
joint or step-wise conditional distribution of future demand cannot
utilize these forecasts. In this work, we address the problem by
using sample paths to predict future demand quantiles in a consis-
tent manner and propose several novel methodologies to solve this
problem. Our work covers the use of covariance shrinkage meth-
ods, autoregressive models, generative adversarial networks and
also touches on the use of variational autoencoders and Bayesian
Dropout.
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KEYWORDS
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1 INTRODUCTION
Demand Forecasting plays a central role in any inventory manage-
ment system. Given past demand series, effective forecasts seek
to characterize the probability distribution of future demand in
order to improve decision making across the entirety of a supply
chain, from buying decisions [23], to inventory management [28]
and aggregate financial planning. The problem lies in the domain
of probabilistic time series forecasting. Traditionally, time series
models such as ARIMA models [5] are used to predict the next
value of a demand series as a function of the previous values. Re-
cent methods, such as [4], [2], [14] utilize artificial neural networks
such as Feed-Forward Networks or Recurrent Neural Networks
(RNN) [11], along with likelihood based loss functions to produce
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time series forecasts. Recently, [40] showed that an RNN trained
using Quantile Loss (QL) [25] can produce state of the art results,
by directly optimizing for the relevant quantiles of all future time
steps. Specifically, the RNN outputs the distribution quantiles of
the time series Dt at any future horizon t with t < T .

The horizon-specific quantile forecast is sufficient for most time
series applications (such as risk management, energy capacity,
weather forecasting etc) but Demand Forecasting requires that
distributional properties for the sum of future demand be charac-
terized as well. For a given future planning period [l , l + s], where l
(lead-time) is the distance to when the buying period begins and s
(span) is the duration of the buying period, quantiles for the total
demand D[l,l+s] =

∑
t ∈[l,l+s] Dt are needed, because they provide

the optimal inventory level for a single period newsvendor problem
applied on that interval[23]. Horizon-specific quantile forecasts
at any step t ∈ [l , l + s] only characterize the marginal distribu-
tion at t . Since quantiles are non-additive, generating quantiles of
D[l,l+s] usually requires the joint distribution of (Dl , · · · ,Dl+s ).
To bridge this gap, a simple solution is to directly forecast D[l,l+s]
itself, in addition to Dt , t ∈ [l , l + s], i.e. to train a model that simul-
taneously predicts quantiles of all future intervals of interests (and
interpolate if necessary). We call this the multi-span solution. The
forecasted quantiles for each lead time and span can then be used
to fit to a parametric form such as a Shifted Gamma or a Lognormal
Distribution which in turn imply a full distribution for the future
demand.

While this approach does provide accurate quantile forecasts,
since there is no restriction on the overlapping output quantities,
the quantile forecasts might not imply a statistically valid joint
distribution. A simple example is that E(D[1,2]) , E(D1) + E(D2)
is possible if the expectations are inferred by fitting a parametric
distribution on each quantile. One might also find that ρ(D1,D2) > 1
if the correlation is inferred from the marginal variance by the
identity Var(D[1,2]) = Var(D1)+Var(D2)+ 2ρVar(D1)Var(D2). As a
result, any dynamic model for inventory management or planning
such as [28] that relies on the joint or conditional distribution of
future demand will fail. The simplest method to overcome these
inconsistent forecasts is to ignore the information provided by
the multi-span forecasts (i.e. the forecast for any interval wider
than a single period) and assume independence between the fu-
ture demands of each buying period. [10] studied the effects of the
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independence assumption and show that system cost and target
inventory levels increase as demand autocorrelation increases - im-
plying that an independence assumption drastically underestimates
both the cost and the target inventory level.

In this work, we seek to generate consistent probabilistic fore-
casts with valid joint distributions of future demand, by adopting
the structure of sample paths. Sample paths are simply multivariate
samples of future demand curves drawn from either a parametric
distribution or a nonparametric generative model. They provide
a full joint empirical distribution, through which any statistics of
interest including total demand quantiles can be computed directly.
We propose a novel shrinkage estimator to repair the inconsis-
tent forecasts generated by the multi-span solution of the quantile
RNNs of [40] by approximating the nearest admissible (positive
semi-definite) covariance matrix and then use a parametric distri-
bution to generate sample paths from these covariance matrices.
We also propose novel modifications on state of the art generative
models such Generative Adversarial Networks (GAN) [18], Varia-
tional Autoencoders [24] and Bayesian Dropout [15], which provide
non-parametric ways of generating sample paths. In this paper, we
provide a full analysis of the production-ready shrinkage method
and analyze the obstacles to providing a fully consistent forecast
from the state of the art neural generative methods.

1.1 Related Literature
While there is a plethora of literature related to shrinkage esti-
mators [37] [26] [27] - none have been applied to the problem of
producing consistent demand forecasts. A related approach is the
nearest correlation matrix method advocated by [21], which apart
from being more computationally intensive suffers from the flaw
that the projection of the correlation matrix doesn’t impact the
variances for each horizon. In other words, the projection does not
modify the diagonal of the covariance matrix - an approach which
reduces the shrinkage and improves the quantiles generated by the
projection. This is remedied by shrinking in covariance rather than
in correlation space. To our best knowledge, there is no literature
on approximating a consistent covariance matrix in the manner
proposed by us in Equation 2.

There has been a great deal of literature related to generat-
ing sample paths for time series. [14] propose the Seq2Seq model
DeepAR, which directly outputs the parameters of a negative bino-
mial, making it a parametric approach (a similar approach is also
advocated by [31]). [38] also propose a likelihood based latent state
model - while the generative adversarial network approach advo-
cated by our work is does not rely on any likelihood assumptions.
[41] develop a metric for learning GANs for point processes, while
[12] propose a similar learning procedure for real valued times
series. While both methods propose a learning procedure similar
to ours, there are some crucial differences with our approach be-
yond our architectural choice of using a Deconvolutional Network,
while they propose to use Recurrent Networks. Both methods seek
to generate samples from the true distribution, while we seek to
generate samples from the future distribution of demand. The same
distinction also applies to the work done in generating sample paths
from Variational Autoencoders such as [13].

Finally, there has been a lot of study into conditioning genera-
tive models in order to better control the data generating process.
Structured output prediction for GANs was first addressed by [29],
where the authors propose that the conditioning information is fed
to the generator and discriminator to allow the generator to produce
images conditional on the additional attributes. [7] put forward In-
foGAN, an unsupervised conditioning of GANs. In this setting, the
discriminator learns to predict a latent code fed to the generator, as
well as to discriminate between true and generated samples. [32] ad-
vance a supervised conditioning technique for GANS: an auxiliary
classifier GAN. The discriminator is used to classify real samples,
and the generator is trained to belong to the correct class. However,
the literature addresses the issue of structuring the output predic-
tion by conditioning with respect to a discrete or low-dimensional
continuous variable. Our prediction typically requires conditioning
not only with respect to high dimensional discrete variables (such
as product category) but also with respect to real values (such as
past demand, distance to holidays etc.). Furthermore, the latest
conditioning techniques require a discriminator capable of predict-
ing parts of the conditioning variables, such methods have little
hope to work with a high-dimensional conditioning manifold. This
makes our problem unique, and our hope is that this paper not
only proposes methodologies but also motivates further study into
conditioning with respect to real values by convincing the reader
that a conditional generative model offers a natural way to address
the demand forecasting problem.

2 METHODOLOGIES
2.1 Shrinkage Methods
Covariance shrinkagemethods aim tomodify the invalid covariance
matrix implied by the multi-span approach. We first formulate how
an (inconsistent) covariance matrix can be computed based on
distribution quantiles over a full set of lead-time/span intervals
[l , s], and then introduce our shrinkage solutions.

2.1.1 Implied Covariance. Consider a multi-horizon forecast
bounded by t < T , then the multi-span approach will output mar-
ginal distribution quantiles of all possible D[l,l+s] where [l , l +
s] ⊆ [0,T ] (some by interpolation, in practice). Note there are
T (T − 1)/2 +T such intervals. Suppose a convenience parametric
distribution is fitted to each of these marginal distributions, then all
possible Var(D[l,l+s]) is available. Note there are T (T − 1)/2 linear
identities Var(D[l,l+s]) =

∑
t ∈[l,l+s] Var(Dt ) + 2

∑
i<j Cov(Di ,D j ),

while the number of unknown terms Cov(Di ,D j ) is alsoT (T −1)/2,
which leads to a unique solution. As mentioned, such an inferred
covariance matrix can be invalid: see Figure [1] for the spectrum
of the covariance matrix for a single product’s forecast, showing
negative eigenvalues.

2.1.2 Covariance Shrinkage. For a single product, let Σ̂ be the
implied covariance matrix. Denote by C, the set of admissible co-
variance matrices for that product. Without loss of generality, we
assume Σ̂ < C.
Using the fact that the set of all possible covariance matrices is a
convex set (see [3]), we only need to consider a single point inside
C - let us denote this point by Σ∗ and define the shrinkage estimator
Σ as:
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Figure 1: The spectrum for the implied covariance matrix of
a single product shows negative eigenvalues, violating the
positive semi-definiteness of true covariance matrices.

Σ = λΣ∗ + (1 − λ)Σ̂ (1)

where λ ∈ [0, 1] can be interpreted as a degree of shrinkage or
shrinkage constant.

Figure 2: Since the set of covariance matrices is a convex set,
we can take a linear combination of an admissible covari-
ance matrix and our sample covariance matrix.

2.1.3 Identifying an admissible matrix. If we assume that ∀i ∈
{1, . . . ,T } : Var(Di ) > 0, then we can consider the diagonalized
matrix Σ∗1 = diag(Var (D1),Var (D2), · · · ,Var (D52)). Alternately,
the identity matrix Σ∗I can be used. Beyond a diagonal matrix, we
can assume any auto-covariance structure, e.g. those implied by
a traditional time series model like an ARMA. Typically, this im-
plies that for each product an ARMA model is specified, estimated
and use to compute the auto-correlations - making the method
considerably slower than simpler assumptions that capture most
of the uncertainty in the future demand. Instead, we propose to
use a different admissible matrix, one that arises from imposing a

constant correlation ρ between the different time steps. This corre-
lation can be simply estimated as the average of the model implied
correlations1

Let ρ̂ := 1
N

∑N
i=1

∑N
j>=i ρi, j where ρi, j denotes the implied cor-

relation between the demand at time i and the demand at time
j. Denote by V = diag(Σ), we consider the admissible covariance
matrix Σ∗const = V

−1/2RV −1/2, where R is a correlation matrix with
all off-diagonal elements as ρ̂.

Empirically, we see that the average (taken across different lead
times) standard deviation (approximated by the safety stock2) im-
plied by the quantile networks grows slightly faster than linearly
across spans for evergreen products - making the constant correla-
tion assumption produce safety stock values that are considerably
lower than those implied by the model for longer durations. This
implies that any buying decision made for a long period will dras-
tically underestimate the amount of safety stock required to meet
demand. As a result we propose a novel shrinkage extension which
modifies not only the off-diagonal elements of the covariance ma-
trix but also its diagonal elements i.e. it uses variances other than
those implied by the forecasts for each individual time period.

A first model is one which grows linearly from the implied vari-
ance for the first time period3 such that the maximum span variance
implied by the matrix is equal to the maximum span variance im-
plied by the model.

Denote by V1 the variance implied by the mesh for the first time
period and by Vmax the variance for the demand of the maximum
span (duration) implied by the model, our variance function is
determined by the following minimization:

minimize
β

(
Vmax −

(∑
i
V (β, ti ) + 2

∑
i, j

√
V (β , ti )Ri, j

√
V (β, tj )

) )2
subject to V (β , ti ) = V1 + β(ti − t1), i = 1, . . . ,T .

(2)
where T denotes the maximum span period and R denotes a

correlation matrix with all off-diagonal elements equal to ρ̂. We
denote the shrinkage estimator for this admissible matrix Σ∗max

2.1.4 Sample Path Generation. Herewe propose a simplemethod-
ology to generate sample paths from the corrected mean4 and co-
variance matrix. The method takes the µ and Σ generated by the
shrinkage and treats it as the mean and covariance matrix of a multi-
variate lognormal distribution. The parameters are then mapped to
their mean and covariance of the associated multivariate normal5.
The multivariate normal samples are then exponentiated to obtain
52 multivariate lognormal samples. Each realization is treated as a
sample path, as seen in Figure 3.

Alternatively, any distribution characterized by its first two mo-
ments6 can be used to sample the 52 dimensional vector of the next
year’s demand. In our work, we found that the estimation of the

1When the model implies a |correlation | > 1, we clip the value to +1 or -1 depending
on the sign.
2defined as the 90th Quantile - 50th Quantile
3Usually this is the variance implied for the first week’s demand
4The mean can be corrected by setting E[D1 + D2] = E[D1] + E[D2]
5See [20] for how this is done
6One could use higher moments with certain assumptions
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Figure 3: Lognormal paths generated for a single product (left)
(whose spectrum is shown in Figure 1) and for a highly seasonal
product (right) using the constant correlation shrinkage. The
orange line shows the true demand.

quantiles is not very affected by the choice of the sampling distri-
bution for evergreen products. For slow moving products however
the distribution choice is much more significant.

2.2 Drawbacks of the Shrinkage Approach
The shrinkage approach, though effective, suffers from two major
drawbacks. The first being that it seeks to approximate the nearest
valid joint distribution to the mesh rather than directly forecast-
ing a valid distribution. This means that more often than not, the
quantile loss for its predictions are significantly worse than the
direct forecasts from a quantile network such as MQRNN. In fact,
the results in Section 8 indicate that while covariance shrinkage is
a mature and consistent approach, it is only able to provide about
∼ 80% of the accuracy that a quantile network can provide over
the independence assumption. As a result, we may consider that
the quantiles forecasted by networks such as the MQRNN cannot
be fully repaired, and improvements can be made to forecasts by
generating predictive sample paths directly.

The second is that the generation of sample paths requires a para-
metric assumption. While the lognormal distribution is suitable
for evergreen products with non-negligible demands, for slower
products it becomes ineffective with most predictions requiring
rounding and other ad-hoc methods for producing integer fore-
casts. As a result of these drawbacks, we investigate non-parametric
methods to generate sample paths. Modern generative methods
such as Bayesian Deep Learning [16], Generative Adversarial Net-
works [18], and Variational Autoencoders [24] provide promising
approaches to solving this problem with few assumptions.

3 AUTOREGRESSIVE MODELS
Autoregressive models learn the joint probability of a distribution
d = {d1, · · · ,dT } by factorizing it as a product of conditionals
: p(d) = Π

t
p(dt |d1, · · · ,dt−1). In this setting, a deep model takes

as input a fixed-size window of values in the past dt−k , · · · ,dt−1
and outputs the distribution’s parameters for the next time point
p(dt |dt−k , · · · ,dt−1). This class of model has been shown to per-
form significantly better at generative tasks for complex distribu-
tions, such as the pixelRNN [34] for the distribution of natural
images. It works remarkably well on raw audio files conditioned
on latent information, as demonstrated by Wavenet [33]. Training

Figure 4: For our WaveNet architecture, we use 1D Convolu-
tions on the past demand, with additional filter maps of the
input containing the product features outlined in Section 7.

such a model is efficient, but generating samples is tedious as it is
sequential by nature : feeding the past information the model out-
put p(d1), we then sample d̃1 ∼ p(d1) to feed it back to the model
for generating the next time-steps. Recent work [35] has drasti-
cally improved the prediction time by generating all time-steps in
parallel.

Our model (see Figure 4 for a visual depiction of the architecture)
outputs a categorical distribution over the next demand valuedt , for
each time point we have 256 classes each classes being an interval
of demand between 0 and twice the maximum demand amount of
the last year. This is achieved using a softmax and minimizing the
negative log-likelihood loss. In order to leverage the ordering of the
classes, when feeding classes to our network, we used thermometer
encoding [6] instead of one-hot encoding. Thermometer encoding
leverages class ordering by encoding the class k as a vector of 1s
until index k , and 0 afterward. We did not find any improvement
by leveraging this property with ordinal regression [8].

4 DROPOUT AS BAYESIAN APPROXIMATION
Since our problem deals with the generation of uncertainty in
model outputs we attempt a principled approach for generating this
uncertainty with neural networks through Bayesian inference with
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Dropout [39] as a practical approximation technique. [15] propose
to modify the traditional dropout procedure by applying the masks
to each node not only during training but also during prediction,
generating approximations of the model uncertainty. We modify
this approach by using a neural network trained as a regression
of the product’s future median (though the mean could be used as
well) for different lead times (with the duration being only a single
time period or span = 1), and using dropout to inject uncertainty
into the prediction - creating a sample path.

In order to understand the efficacy of the method, we trained the
MQRNN proposed by [40] and added dropout to the LSTM layer as
well as each of the decoder feedforward networks. For the LSTM
Layer, we dropout linear connections with a probability of 0.4 and
hidden connections with a probability of 0.6. We dropout nodes
in the feedforward decoder layer with a probability of 0.4. These
estimates were obtained through a grid-search.

5 VARIATIONAL AUTOENCODERS
Autoencoders [see [17] for a comprehensive overview] are trained
to learn a lower dimensional representation of the data. In the case
of the Variational Autoencoder (VAE) [24], the assumption is that
this lower dimensional representation has a Gaussian prior. The
loss used is a sum of the reconstruction error and the KL divergence
of the reconstructed output from a Gaussian distribution. For our
purposes, we use a traditional VAE, and find that a multivariate in-
dependent normal fails to capture enough uncertainty in the actual
sample path. As a result, we propose an extension that incorporates
correlations between the latent variables and extend the loss func-
tion to incorporate this. Denote by x the input of the demand time
series of the previous year (possibly along with other features) and
by x̃ the demand for each time period of the following year. Then,
the classical VAE loss is as follows:

x →
encoder

(µ, logσ 2) (3)

Let z = µ + σZ →
decoder

x̃ (4)

Lr econstruction = ∥x − x̃ ∥L1,L2, ... (5)

LKL =
1
2

∑
(−1 + µ2 − logσ 2 + σ 2) (6)

LVAE = Lr econstruction + LKL (7)

where Z ∼ N(0, 1). We extend this to incorporate correlations
between the time points of our sample paths in the following way:

The first task is to modify the KL component of our loss function
- the KL loss in the original VAE formulation is simplified due to the
Gaussian posterior assumption. In the general case, the KL loss is
the KL divergence between the posterior distribution given x and a
Gaussian prior, namely:

qΦ(z |x) = N(z; µ(x),σ 2(x)) (8)
p(z) = N(0, 1) (9)
LKL = KL(qΦ(z |x)| |p(z)) (10)

The first step towards having a VAE with correlated latent vari-
ables is to compute the KL divergence between two correlated
multivariate Gaussians:

q(z) = N(z; µ1, Σ1) (11)
p(z) = N(µ2, Σ2) (12)

DKL(q(z)| |p(z)) = −
1
2

[
log

|Σ2 |

|Σ1 |
− d

+ tr (Σ−12 Σ1) + (µ2 − µ1)Σ
−1
2 (µ2 − µ1)

]
(13)

Hence the KL loss becomes :

qΦ(z |x) = N(z; µ(x), Σ(x)) (14)

LKL =
1
2

[
− log |Σ(x)| − d + tr (Σ(x)) + ∥µ(x)∥22

]
(15)

In order to learn a VAE with correlated latent variables, we
need the determinant of the correlation matrix and require that
the encoder output a symmetric positive definite matrix. We can
have both by predicting a lower triangular matrix C with strictly
positive diagonal terms, then model S = CCT (using the Cholesky
decomposition) whose determinant is the product of diagonal terms
of C squared. We use the L2 loss on the difference of log-demand
to generate our samples. Our Variational Autoencoder network
architecture uses a feedforward network for both the encoder and
decoder. Both hidden layer sizes were set to 512 and the latent size
to 52, we use the Adam optimizer with a learning rate of 10−3.

6 GENERATIVE ADVERSARIAL NETWORKS
All of our methods thus far have relied either on an explicit para-
metric assumption (such as the Shrinkage) or on an implicit one
(such as the VAE/Dropout). However, we would like to model the
dynamics of our multi-dimensional stochastic process without mak-
ing any explicit assumptions about its form. Generative Adversarial
Networks (See [18]) provide a powerful tool by formulating the
learning problem as a mini-max game between two networks - a
Generator, which produces synthetic samples and a Discrimina-
tor, which seeks to tell the synthetic samples apart from real ones.
The optimal value for this loss function can provably be shown to
be achieved when the generator samples come from the true data
generating distribution.

We propose to use the Generative Adversarial Networks in the
following way - the generator is trained to map gaussian noise to
an N -dimensional vector of future demand, while the discriminator
must classify between a generated path and a true future path
during training. During prediction, the generator is used to produce
predictive sample paths for each product.

While the original GAN proposes to use a Jensen-Shannon di-
vergence, recently [1] proposed to use the Wasserstein distance as
the primary objective for the minimax game. This creates many
favorable behaviors including a more stabilized training procedure.
We attempted both the classical GAN loss function, as well as the
Wasserstein loss [see Figure 5 for a visual comparison of the JS
loss training loss curve and the WGAN training loss]. We propose
several different experiments to understand whether the problem
of demand forecasting can be addressed by GANs and then propose
architectures and methods for producing conditional forecasts for
different products from a Conditional GAN architecture [29]. To
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deal with the fact that our demand data has multiple scales we
model log(1 + demandt ) rather than the demand directly.

Figure 5: The training curve for the model using the WGAN-
GP (right) shows relative stabilitywhen compared to the clas-
sical JS loss based GAN training (left)

6.1 Unconditional GANs
In order to understand the efficacy of a GAN in learning the quan-
tiles of the future demand distribution, we begin by modifying the
classical DCGAN architecture [36] to work for 1-dimensional in-
puts. Our inputs to the discriminator are the 52 week demands for
a wide range of products, as well as the synthetic 52 dimensional
samples produced by the generator.

6.1.1 Architectures. Our best performing architecture mimics
the DCGAN architecture of [36] with 1 dimensional convolutional
layers. Our generator is made of blocks of 1-dimensional trans-
posed convolutions, 1-dimension batch normalizations [22] and
Rectified Linear Unit (ReLU) activations [30]. The first block has
a kernel of size 7, stride 1 and padding 0 and 256 output feature
maps. It is followed by 3 blocks with kernels of size 4, stride 2 and
padding 1, and respective feature maps 128, 64, and 1. The generator
outputs a 56-dimensional vector, of which we keep the middle 52
values as our sample path. The Discriminator is symmetrical to
our generator with convolutions and Leaky ReLU activations [42]
of negative slope 0.2. The first block consists of a convolution of
kernel size 4, stride 2 and padding 3, to match the 52-dimensional
input. We use an Adam optimizer with learning rate = 2× 10−4 and
a exponential decay rate for the first moment estimates (β1) = 0.5
and an exponential decay rate for the second-moment estimates
(β2) = 0.999.

6.2 Conditional GANs
In order to better control the data generating process, we propose
to adapt the Conditional GAN variant developed by [29]. Since
we would like to generate the demand of the future distribution,
other conditional variants of GANs such as the Auxiliary GAN [32]
which require the input to the generator to be both the features as
well as the label are ruled out, as the label will not be available to
us at prediction time. Our first architecture (which can be seen in
Figure 6) extends the Deep Convolutionnal architecture [36] with
one-dimensional convolutional layers, to address our conditional
generation problem on times series. Our generator takes as input
a noise vector of size 100 concatenated with the past demand and
features of the time series. The discriminator has as input the gener-
ated future demand in one feature map, the past demand in another

Figure 6: For our conditional DCGAN architecture, we use
1D Convolutions on the past demand, with additional filter
maps of the input containing the product features outlined
in Section 7.

and the time series features taking multiple feature maps, so that
the sliding window of the convolution is applied to homogeneous
input variables. We enforce the Lipschitz constraint on the discrim-
inator by clamping the weights to 0.1, or using a gradient penalty
as suggested in [19] with a gradient target norm of 0.1 and penalty
term of 10.

7 DATA
For our analysis, we use the same dataset of 60,000 Amazon products
as [40]. The data consists of weekly demand for around 60,000
sampled products from different categories within the US Market
starting from the year 2012 to 2017. Demand data for 2016 is used
to test the models by producing a single sample path for each of
the 52 weeks in 2016 (for the unconditional networks) and for each
of the weeks of 2016 (for the conditional networks). The covariates
for our conditional models are the same used by [40] which are
a range of suitably chosen and standard demand drivers in three
categories: past demand, promotions and product catalog fields. We
always forecast for a maximum duration of 52 weeks or 1 year from
the week of forecast creation.

8 RESULTS
Since our covariance shrinkage approach can be used as a drop-
in replacement for the distribution mesh of [40], we propose to
compare the different shrinkage methods based entirely on their
ability to approximate the mesh in terms of quantile loss. While this
method of comparison is valid for approaches that seek to repair
the mesh, they become less viable for generative models. This is
because the efficacy of the sample paths produced by generative
models, being non-parametric and directly forecasted, depend on
the control algorithms utilizing them - specially the sensitivity of
these algorithms to inter-temporal correlation and parametric as-
sumptions. Furthermore, the difficulty in conditioning with respect
to high dimensional discrete or continuous variables hampers the
ability of generative models to produce well calibrated estimates of
uncertainty. In this section, we analyze the results of each method
both qualitatively and (where applicable) quantitatively - offering
hypothesis for the model, its shortcomings and insights into its
effectiveness.

8.1 Shrinkage Methods
We begin by analyzing the quantile loss for the different shrinkage
methods. For two different products, we see from Figure 7 that an
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Figure 7: The safety stock estimates generated by assuming
independence (green) grow as a square root, while the quan-
tiles generated by MQRNN (purple) have most of their un-
certainty captured by the constant correlation (red) and the
max span (mustard) shrinkage methods.

Table 1: Quantile Loss Comparison for Different Shrinkage
Methods relative % to MQRNN

Method P90 Quantile
Loss

P50 Quantile
Loss

P10 Quantile
Loss

MQRNN 100 100 100
Independence 122.25 101.25 176.63
Constant Cor-
relation

104.09 100.04 119.86

Maximum
Span Fit

108.48 102.84 111.80

independence assumption between the demand for different weeks
produces safety stock estimates that grow like a square root as a
function of the duration of the prediction (the span). Shrinking to
the diagonal (Diagonal in the legend of the figure) provides some im-
provement while a simple constant correlation assumption captures
a large part of the uncertainty that the independence assumption
misses. The maximum span method proposed in Equation 2 how-
ever, is able to capture most of the uncertainty for the longer spans
after shrinkage. This shows us that even a simplistic parametric
method may be an effective fix for the problem.

In order to better understand these methods, a quantile loss com-
parison was done for each of the more effective shrinkage methods.
For this analysis, we randomly sample 13,000 out of the 60,000
products in the dataset utilized by [40]. We compare the MQRNN
forecast with the independence assumption as a baseline, the con-
stant correlation shrinkage and the maximum span shrinkage. Table
1 shows that the constant correlation shrinkage is able to capture
about ∼ 80% of the accuracy provided by the MQRNN mesh over
an independence assumption.

Figure 8 shows the P10, P50 and P90 Quantile Loss as a function
of the duration (or span). As expected, the gap in QL between the
mesh and the independent sample paths grows as a function of the
span. The maximum span shrinkage is able to (by design) match
the performance of the MQRNN forecast for longer spans, while
the independent sample paths become progressively worse. The
extremal quantiles (P10, P90) show a larger gap than the median
since they tend to be more affected by estimates of the variance.

Our recommendation is to use the constant correlation shrinkage
for most products, except those for which the target duration is
large. In those cases, the maximum span shrinkage provides the
best solution.

8.2 Dropout as Bayesian Approximation
Figure 9 shows the results of using dropout applied to MQRNN.
In red is the mean demand, the MQRNN implied P90-P10 spread
(the purple band) is clearly much larger than the P90-P10 spread
achieved by dropout (the green band) - making this method ineffec-
tive. Our conjecture is that the method is primarily geared towards
learning the endogenous uncertainty of a model, while our problem
is concerned with the learning of exogenous uncertainty of demand.
In fact, even for large dropout probabilities at each layer we were
unable to produce well-calibrated estimates of uncertainty.

8.3 Variational Autoencoders
See Figures 10, 11 for a qualitative comparison of the paths gener-
ated by both the classical VAE and our correlated extension. We
find that the VAE is able to learn the variance of the demand much
more effectively than the classical VAE- however, neither seems to
be able to capture the noise of the problem effectively. This might
be due to the assumption that the latent variable follows a Gaussian
distribution with only a single correlation parameter. A richer co-
variance structure or perhaps a distribution with fatter tails might
be required to capture the distributional behavior of the future
demand.

8.4 Conditional Generative Adversarial
Networks

Since we found that the DCGAN with Wasserstein Loss and gradi-
ent clipping is able to learn the different quantiles of future demand
extremely well, we proceed with our investigation of conditioning
these networks to control the data generating process. Figure 12
show the paths generated by a DCGAN architecture with Wasser-
stein Loss and gradient penalty. The paths are able to produce
enough noise (the blue band indicates the P10 and P90 of the paths
for each time point) to be useful. However, the conditioning of the
model remains a challenge. Periodically, the GAN falls into mode
collapse and generates extremely similar paths for each product -
as shown in Figure 13. We believe that while this method shows the
most promise - the instability of training GAN’s with conditioning
variables that have high dimension or are continuous prevents it
from being able to match the performance or quality of the sample
paths produced by shrinkage.

8.5 WaveNet
We compare WaveNet to our other models and find that while it is
able to capture rich temporal dynamics (see Figure [14]), it struggles
during periods of high variance such as seasonal demand patterns.
Furthermore, the autoregressive nature of the model means that
errors tend to compound over longer periods leading to poorer long
lead time forecasts.
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Figure 8: P10 (Top Left), P50 (Top Right), P90 (Bottom) Quantile Loss vs Span shows that the indepen-
dence assumption (green) degrades as a function of Span while the constant correlation (blue) per-
forms worse than the Maximum Span Variance Shrinkage (red) at longer spans. The QL of MQRNN
as a function of span can be seen in Purple.

Figure 9: The quantiles implied by the sample paths gener-
ated from the dropout approach (in green) indicate that they
fail to capture the uncertainty of demandwhen compared to
forecasting the quantiles directly (in purple) by MQRNN.

Figure 10: Demand for a single product (dark blue) along
with the mean (light blue), 10th and 90th quantiles (blue
band) of the generated sample paths from a classical VAE

Figure 11: Demand for a single product (dark blue) along
with the mean (light blue), 10th and 90th quantiles (blue
band) of the generated sample paths from a correlated VAE

9 CONCLUSION AND FUTURE RESEARCH
We present a general framework for producing consistent fore-
casts from the accurate predictions of quantile networks such as
MQRNN through sample paths and demonstrate a method in co-
variance shrinkage that can effectively produce these consistent
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Figure 12: Demand for a single product (red) along with the
mean (in blue), 10th and 90th quantiles (the blue band) of the
generated sample paths from a Wasserstein DCGAN with
Gradient Penalty

Figure 13: Demand for a single product (red) along with the
mean (in blue), 10th and 90th quantiles (the blue band) of
the generated sample paths fromaWassersteinDCGANwith
Gradient Penalty shows that mode collapse causes the gener-
ator to produce similar paths for products with very differ-
ent demand histories

Figure 14: WaveNet forecasts and the associated autocorrela-
tion matrix.

forecasts. However, we find that while shrinkage methods provide
a consistent, scalable approach, they are only able to recover part
of the accuracy that the quantile networks provide. This maybe due
to the fact that the mesh forecasted by networks such as MQRNN
cannot be repaired in a loss-less manner, indicating that improve-
ments may be possible through direct prediction of the full joint
distribution via sample paths.

As a result, we also propose frameworks for using neural meth-
ods to directly generate these predictive sample paths. We propose

Table 2: Quantile Loss Comparison for Lead Time 0/3 Span
1 relative % to MQRNN

Lead Time 0 Lead Time 3

Method P90 QL P50 QL P90 QL P50 QL

MQRNN 100 100 100 100
Ind. 114.15 106.02 102.31 101.74
Constant ρ 113.97 106.07 102.15 101.79
Max Span 114.76 150.96 102.86 144.88
WaveNet 102.60 204.91 153.83 181.83

several novel modifications of classical and modern generative ap-
proaches and find that the difficulty of conditioning generative
models with respect to continuous or high dimensional discrete
variables and the inability of autoregressive models to accurately
capture the uncertainty of distant periods or periods of high vari-
ance (such as highly seasonal demand) prevents these methods from
achieving state of the art performance. Despite this, our findings
can help in the utilization of quantile forecasts by inter-temporal de-
cision making algorithms (for e.g. the methods put forward by [28])
as well as advanced planning systems such as those proposed by [9].
We hope that this problem inspires further research into generative
modelling for time series prediction, allowing fully non-parametric
sample path generation.
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