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ABSTRACT
Learning from multiple unbounded time-series has received less
attention despite the key applications (such as video analysis) gen-
erating this data. Inspired by never-ending approaches, this pa-
per presents an algorithm to continuously learn from multiple un-
regulated time-series, in a framework based on ensembles of GMM-
UBM (Universal Background Models). The Minimum Description
Length (MDL) method, as a powerful inductive inference, is ex-
ploited to predict the quality of current knowledge on arrival obser-
vations in an unsupervised manner in order to control the complexity
while maintaining the accuracy of the framework in such evolving
environment. Extensive experiments demonstrate the advantages of
the proposed framework in terms of accuracy and complexity over
several baseline approaches on multiple datasets.
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1 INTRODUCTION
Time series are present in many key real world problem such as
audio and video processing. It is expected that using time-series
learning techniques leads to effective and hands-on solutions for
such scenarios. In this paper, one of the central problems related to
video analysis is approached from a time-series perspective.

Networks of video cameras are commonly employed to monitor
large areas for a variety of applications. A central issue in such
networks is the tracking and recognition of individuals of interest
across multiple cameras. These individuals must be recognized when
leaving the Field of View (FoV) of one camera and re-identified
when entering the FoV of another camera. In such environments, the
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underlying distribution of data changes over time - often referred to
as concept drift [14] – either due to intrinsic changes (pose change,
movement, etc.), or extrinsic changes (lighting condition, dynamic
background, complex object background, changes in camera angle,
etc.). Thus, models need to be continually updated to represent
the latest concepts. Moreover, when new objects enter the scene -
referred to as class evolution – new models need to be trained for
the novel classes. Additionally, it is likely to have multiple streams,
recorded at different starting points with various lengths, for the same
Region of Interest (RoI) of individuals, since the objects move and
cross in the FoV of multiple cameras (see Figure 1a). The problem
gets further complex when the system is faced with unbounded
streams of data [1]. It is desirable, the surveillance system tracks that
person across all cameras whose FoV overlap the person’s path over
an unlimited time frame. Thus, a suitable outcome for this system
could be a time-line graph assigning streams from each camera to an
identity for the indicated presence period, as illustrated in Figure 1b.
Learning in such scenario can be characterized as follows:

Let υ be a set of unregulated time-series υi. Streams are poten-
tially with concept drift as well as concept evolution. Each obser-
vation x within each stream is in a d-dimensional space, x ∈ Rd .
Recording is not limited to a bounded period. An effective and
appropriate one-pass algorithm to fit in our scenario is required to:

• learn from multiple unregulated streams;
• handle multiple high-dimensional data streams;
• handle concept drift;
• accommodate new evolving classes;
• deal with massive unlabelled data;
• be of limited space and time complexity.

Main Contributions: We propose a strategy for persistent learn-
ing of multiple time-series over an unbounded time frame. Inspired
by never-ending learning approaches, we employ active (detect &
re-act) techniques to control the complexity of the most popular
group of passive approaches, ensemble based models [11], in a time
evolving environment. The active approach is based on an infor-
mation theoretic criterion that triggers an adaptation with respect
to the models’ quality by updating or building a classifier. The key
insight is that the “good” models can describe incoming observations
as efficiently as possible, thus, we adopt a Minimum Description
Length (MDL) criterion to predict how well the current knowledge
can represent new observations in an unsupervised nature.

The rest of the paper is organized as follows. In Sections 2 and 3
we review the employment of learning methods for evolving environ-
ments and some background on the NEVIL.ubm approach respec-
tively. Section 4 provides an overview of the leaning framework. In
Section 5 we discuss the experimental methodology. In Section 6, we
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Figure 1: A surveillance scenario including three persons A, B, and C, moving in the scene, crossing the FoV of 3 cameras: c1, c2, and c3 .

experimentally investigate the effectiveness of proposed long-term
strategy on several real-world videos.

2 RELATED WORK
In this paper, we look at the problem as learning from multiple data
streams in wild environments, that views segments of a stream as
a unique element to classify, thus single stream mining methods
cannot be employed. With a few exceptions [21, 22], most of the
methods proposed for parallel stream mining [7] require equal-length
streams coming from a fixed number of sources. Thus, they would
fail to leverage information from time-varying video tracks. De-
spite the success of NEVIL.gmm and NEVIL.ubm to mine multiple
unregulated streams, long-term learning is still a major issue.

Never-ending learning systems have been one of the latest interest
in the field of learning as they are able to learn many concepts
“in a cumulative nature”. The Never-Ending Language Learning
(NELL) [5] research project has been the inspiration of numerous
researches to address the never-ending learning problem [2, 8, 16,
18]. Obviously, the techniques used by research works are informed
by different assumptions in respect with the applications and goals.
With a few exceptions [20, 28], most of the never-ending literature
has focused on coverage of knowledge, while our approach tries to
cover knowledge and accuracy as well as efficiency.

Learning in non stationary environment requires evolving ap-
proaches that can adapt to accommodate the changes accordingly.
The adaptation problem has been addressed by either active or pas-
sive approaches. The active approach is designed to detect concept
drift in order to trigger an adaptation [14], whereas the passive one
continuously update the knowledge every time new data is received.
While active approaches are more effective in online settings with
abrupt drift, passive approaches are better suited for batch learning
in settings with gradual drift and recurrent concepts [11]. Ensemble
based approaches are the most popular group of passive methods due
to higher accuracy, flexibility and stability to handle concept drift as
well as class evolution [12]. A classic approach to track changes is
to train new classifier(s) as new data arrives and to keep all the clas-
sifiers [9]. Accumulating large number of classifiers imposes serious
costs (i.e. acute storage space and long prediction time) to the system.
Although the cost seems negligible with relatively simple research
datasets, they may become highly critical for real-word data. In fact,
these approaches can easily generate thousands of classifiers under

a time-evolving environment. Additionally, it is not always true that
the bigger ensemble, the better it is [29]. Some research works tried
to address this problem using a time-weighting strategy [12, 22], in
which decisions made by models inside ensembles are combined in
respect to time. However, by giving higher weights to the decision
made by more recent models, the older ones are forgotten in time,
still a substantial number of models are kept in the framework.

INEVIL was proposed in [20] for long term monitoring of objects
by detecting the deviations in either feature distribution or learner.
In this work, the problem is seen from a different perspective. We
propose an unsupervised criterion to inspect whether the current
knowledge is able to represent new observations “well enough”?

3 BACKGROUND ON THE NEVIL.UBM
APPROACH

In this section, the Never Ending Visual Information Learning with
UBM (NEVIL.ubm) framework is briefly presented. NEVIL.ubm [22]
is designed for learning from multiple un-regulated streams in a non-
stationary environment where no labelled data is available at the first
place but the learning algorithm is able to interactively query the
user to label the desired outputs at carefully chosen data points.

The system receives multiple visual streams, generated by a typ-
ical tracking algorithm, which analyses sequential video frames
and tracks RoIs over time. For each RoI the features corresponding
to some pre-selected object representation (e.g. bag of words) are
extracted (υ l l = 1, ...,B). A batch υ

mt
t is a temporal sequence of

frames υ
mt
t, f , where f runs over 1 to the batch size B. Initially, the

composite model is initialized to yield the same probability to every
class (uniform prior). When the features of batches of RoIs υ

mi
t, f in

time slot t become available, the framework starts computing the
scores S (υmi

t |Ck,Ht−1) for each batch υ
mi
t in the time slot. The

scores are obtained from the likelihood ratio test of the batch data
obtained by the individual class model Ck and the UBM.

The composite model Ht is an ensemble of Micro-classifiers en-
sembles (MCE j

t , j = 1, ...,k). Each MCE j
t includes classifiers that

are incrementally trained (with no access to previous data) on in-
coming batches of jth class at t, h j

t . The individual models h j
t are

combined using a weighted majority voting, where the weights are
dynamically updated with respect to the classifiers’ time of design.
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The prediction output by the composite model MCE j
t for a given

ROI (υmi
t, f ) is

p
(

Ck|υmi
t, f ,MCE j

t

)
= Σt

ℓ=1W t
ℓ hℓ

(
CK |υmi

t, f

)
(1)

where h j
ℓ . is the classifier trained from batches of jth at TS ℓ, W t

ℓ is
the weight assigned to classifier ℓ, adjusted for time t. The weights
are updated and normalised at each time slot and chosen to give
more credit to more recent knowledge. After combining the deci-
sions of classifiers inside every MC-ensemble, the ensemble will
assign a batch to the label of MC-ensemble with highest score
(S (υmi

t |Ck,Ht−1).
Such on-line learning may suffer if labelling errors accumulate,

which is inevitable. To help mitigate this issue, the system is designed
to interact wisely with a human. Once S (υmi

t |Ck,Ht−1) is obtained,
a batch confidence level (BCL) is estimated. In NEVIL.ubm frame-
work, if the scores associated to all observed classes are significantly
low (below a predetermined threshold), it is very likely that this class
has not been observed before and it is considered novel and a new
label (y) is automatically assigned to this batch. Having decided that
the batch data belongs to an existing class, one needs to decide if the
automatic prediction is reliable (the reliability test is positive) and
accepted or rather a manual labelling needs to be requested. If BCL
is high enough (above a predefined threshold), the predicted label

ŷ = argmax
Ck

S
(
υ

mi
t |Ck,Ht−1

)
(2)

is accepted as correct; otherwise the user is requested to label (y) the
data batch.

The choice of Gaussian Mixture Models (GMM) to model feature
distributions in biometric data is motivated by extensive research
of related areas. From the most common interpretations, GMMs
are seen as capable of representing broad “hidden” classes, reflec-
tive of the unique structural arrangements observed in the analysed
biometric traits [24]. Besides this assumption, Gaussian mixtures
display both the robustness of parametric unimodal Gaussian den-
sity estimates, as well as the ability of non-parametric models to fit
non-Gaussian data [23]. This duality, alongside the fact that GMM
have the noteworthy strength of generating smooth parametric multi-
modal densities, confers such models a strong advantage as gener-
ative model of choice. To train the Universal Background Model a
large amount of un-labeled data, is used, so as to cover a wide range
of possibilities in the individual search space [27]. The training pro-
cess of the UBM is simply performed by fitting a k-mixture GMM to
the set of feature vectors extracted from all the “impostors”. In this
framework, the UBM is trained offline, before the deployment of the
system. It is designed from a pool of streams of disjoint individuals
that is representative of the complete set of potentially observable
‘objects’.

At each time slot, the batches predicted to belong to the same class
are used to generate the class model by tuning the UBM parameters
in a maximum a posteriori (MAP) sense. The adaptation process
consists in two main estimation steps. First, for each component of
the UBM, a set of sufficient statistics is computed from a set of M
class specific feature vectors. Each UBM component is then adapted
using the newly computed sufficient statistics, and considering di-
agonal covariance matrices. Note that the UBM is trained offline,
before the deployment of the system. It is designed from a large

pool of streams aimed to be representative of the complete set of
potentially observable ‘objects’.

4 LONG-TERM LEARNING OF A CONCEPT
Long-term learning has been mostly addressed with two strategies in
the literature; one trains a new classifier as new data arrives [12, 22],
which obviously impose serious cost to the system, on the other side,
a less expensive method incrementally updates a learner with new
observations [10], however it may fail to detect recurrent drift after
awhile. Between two extremes, we proposed a method to actively
update a passive learning composite in an unsupervised manner [20].

The first step is to inspect whether at least one of the classifiers
inside a micro-ensemble is able to represent new batches “well” or a
new model needs to be added to the ensemble.

The answer lies within model selection techniques, which stands
out as one of the most important problems of inductive inference.
The Minimum Description Length (MDL) -based model selection
is a well-established method in machine learning [15, 25]. In our
work we adopt MDL principle to develop a strategy for controlling
complexity of an ensemble in active learning over evolving multi-
dimensional data streams.

The description length of a fitted model is the sum of two parts.
The first part of the description length represents the complexity of
the model L(h). This part encodes the parameters of the model itself;
it grows as the model becomes more complex. The second part of the
description length represents the fit of the model to the data Lh(xn);
as the model fits better, this term shrinks. The best model is the one
which minimizes the total codelength of the two-stage code:

Cost
(
h,υ

)
= argmin

(
L
(
h
)
+Lh

(
υt
))

(3)

Note that for the sake of simplicity, we omit the indices. In [17], the
success of an ensemble of M models compression is assessed by:

CostH = ΣCost
(
h,υ

)
(4)

Once a new batch of RoIs is received, the framework assigns a label
(m). Then the cost of the ensemble is predicted in two ways:i)if a
new model adds to the ensemble costadd. ii) if the most represen-
tative model inside the current ensemble is updated costu pdate. If
costadd < costu pdate, a new model is added, otherwise the frame-
work updates the most representative model. However, in our frame-
work, GMM-UBM are utilized as the base learners, so the complex-
ity of individual models do not change over time and the data code
length is the most effective measure. Since, adding a new model
increases the complexity of the ensemble, it is preferable to update
the model instead of adding a new member to the ensemble. This
can be interpreted as if at least one of the models inside ensemble is
“good” to represent the new observations.

Once a new batch of RoIs is received, the framework assigns a
label (let assume, m). Then the best predictive model inside MCEm,
that yields the shortest code length with new observations, is iden-
tified. If the model is “good”, the model requires reasonably short
codes to describe new observations below a predefined threshold
(T ′). If so, the framework will update the best model in MCEm with
the most recent data (h′mt ). The method is detailed in Section 4.2.
Otherwise, none of the models is not able to describe newly captured
data due to abrupt drift, the framework trains a new model and stores
into MCEm. The algorithm is detailed in Alg. 1.
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Algorithm 1 Long-Term Learning

procedure
Input: H m

t−1,υ
m
t ,∀m = 1, ...,K

Model Quality Assessment (Sec.4.1)
dm

t = dυm
t ,hm

j ,∀ j = 1, ...,K
Closest models

∃k ∈ 1, ...,K,dt
k < dt

j,∀ j , k
if dt

m > T ′ then
Adding criterion
hm

t ← υm
t

H m
t = hm

t ,H
m

t−1
else

Updating a concept (Sec. 4.2)
h′mt = updateυm

t ,hm
t−1

H m
t = h′mt ,H m

t−1

4.1 Model Quality Assessment
We propose a simple yet intuitive model quality assessment criterion
based on MDL principle which yields a particularly simple way to
evaluate how well a model will encode and describe a set of new
observations. The rationale behind MDL criterion is: if you can
build a short code for your data, this means that you have a good
data generation model [19]. Inspired by [13], the minimum length
between observation of the batch predicted to belongs to class j at t
and the model (hmi

j x = c
i=1 αihix) inside MCE j can be obtained as:

dhm
j ,υ

m
t =− log pCk|υm

t, f ,h
m
j +

c
2

log
B
12
+

cN +1
2
+

N
2

c
i=1

log
Bαi

12
(5)

where, pCk|υm
t, f ,h

m
j , c, and B are code-length of the frames inside

the batch, the number of model parameters, and the number of
RoIs, respectively. N is a constant that grows quadratically with the
dimension d of the data and for a case of free covariance matrix
equals to d + dd+1

2 .

4.2 Updating a learner with new observations
Once gradual drift is observed, the data from the batches predicted
to belong from the same class is used to generate the class model
by tuning of the (hm

t−1) parameters, in a maximum a posteriori
(MAP) sense. The rationale behind this method is basically similar
to updating the individual models for UBM. The adaptation process
consists of two main estimation steps. First, for each component of
the h′mt , a set of sufficient statistics is computed from a set of B class
specific feature vectors, υ∗m

t = {x1, ...,xB} computed from the batch
data:

ni = ΣB
b=1 p

(
i|xb

)
(6)

Ei
(
x
)
=

1
ni
ΣB

b=1 p
(
i|xb

)
xb (7)

Ei
(
xxt) = 1

ni
ΣB

b=1 p
(
i|xb

)
xbxt

b (8)

where p(i|xb) represents the probabilistic alignment of xb into each
hm

t−1 component. Each hm
t−1 component is then adapted using the

newly computed sufficient statistics, and considering diagonal co-
variance matrices. The update process can be formally expressed

Figure 2: An example of diversity in appearance

as:
ŵi =

[
αiniB+

(
1−αi

)
wi
]

ξ (9)

µ̂i = αiEi
(
x
)
+
(
1−αi

)
µi (10)

Σ̂i = αiEi
(
xxt)+ (1−αi

)(
σiσi

t +µiµi
t)− µ̂iµ̂i

t (11)

σi = diag
(
Σi
)

(12)

where {wi,µi,σi} are the original hm
t−1 parameters and {ŵi, µ̂i, σ̂i}

represent their adaptation to the specific class. To assure that i wi = 1
a weighting parameter ξ is introduced. The α parameter is a data-
dependent adaptation coefficient. Formally it can be defined as:

αi =
ni

r+ni
(13)

The relevance factor r weights the relative importance of the original
values and the new sufficient statistics.

5 EXPERIMENTAL METHODOLOGY
5.1 Datasets
In order to explore the properties of the proposed framework, we
evaluated it on multiple datasets covering various possible scenarios
in a multi-camera surveillance system. Experiments were conducted
on public indoor (CAVIAR) and outdoor (PETS) datasets. Seven
scenarios of CAVIAR (OneLeave ShopReenter1, Enter ExitCrossing-
Paths1, OneShopOneWait1, OneStop Enter2, WalkBy Shop1front)
as well as two views of scenario S2.L1 of PETS2009 have been
applied in our experiments. SAIVT-Softbio is the only dataset that
simultaneously meets all the requirements for a full open-world
task: Multi-shot data and multiple cameras with camera-transition
uncertainty [3]. This dataset consists of 152 subjects travelling in a
building environment through up to eight camera views, appearing
from various angles and in varying illumination conditions reflect-
ing real-world conditions (see Figure 2). To evaluate the system,
each dataset is divided into 3 disjoint subsets (different individuals).
The first subset is used to train UBMs. The second set is used to
calibrate all the threshold T ′. The final portion is used to evaluate
the performance. To extract the RoIs, we employed an automatic
tracking approach to track objects in the scene and generate streams
of bounding boxes, which define the tracked objects’ positions. As
the tracking method fails to perfectly track the targets, a stream may
include RoIs of distinct objects.
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Dataset No. of Streams Range No. Classes Imbalance Degree No. of Cameras Setting
OneLeaveShopReenter1 3 85−160 2 0.28 2 Overlapped
OneLeaveShopReenter2 3 63−347 2 0.11 2 Overlapped

WalkByShop1front 6 40−225 4 0.22 2 Overlapped
EnterExitCrossingPaths1 6 34−216 4 0.23 2 Overlapped

OneStopEnter2 7 51−657 4 0.19 2 Overlapped
OneShopOneWait1 10 36−605 4 0.25 2 Overlapped

OneStopMoveEnter1 42 10−555 14 0.14 2 Overlapped
PETS2009 19 85−576 10 0.13 2 Overlapped

SAIVT-SOFTBIO 240 21−211 152 0.12 8 Overlpped, Nonoverlpped

Table 1: The datasets characteristics. Imbalance degree is defined by the ratio of sample size of minority class to that of the majority ones ; Range is
defined by the length of shortest and longest streams in a given dataset, respectively.

5.2 RoI Representation
Our reference image descriptor is an improved version of FV, since
the FV was found to serve as the most effective encoding technique
for pooling approaches in recent studies [6]. Given an image (RoI),
the IFV υ is obtained by extracting a dense collection of patches and
corresponding local image features (herein, SIFT) from the image
at multiple scales. To avoid the curse of dimensionality, Principle
Component Analysis (PCA) is applied to the full set of features
as a pre-processing step. The number of features in each stream is
reduced to 200 dimensions.

5.3 Baseline Methods
The work closest in spirit to this work is [16], that proposed a
never-ending framework for one dimensional real value time series.
Since, we deal with multiple high-dimensional data streams, the
framework is not applicable in our scenario two baseline approaches:
1) Ensemble Classifier Model (here, NEVIL.UBM), that adds a
new member to the ensemble as new data arrives. 2) Incremental
methods (single classifier models): at the other side of extreme these
methods perform a continuous adaptation of the model, once new
observations received.

5.4 Confidence Measure
Various criteria have been introduced as uncertainty measures to
invoke the teachers in an interactive scenario [26]. Most confident
measure (MC): Perhaps the simplest and most commonly used crite-
rion relies on the probability of the most confident class, defining
the confidence level as maxCk S

(
Ck|υmi

t ,Ht−1
)
.

5.5 Evaluation Criteria
Active learning aims to achieve high accuracy using as little anno-
tation effort as possible. Thus, a trade-off between accuracy and
proportion of labelled data can be considered as one of the most
informative measures.

Accuracy. In a classical classification problem the disparity be-
tween real and predicted labels explains how accurately the system
works. However, in our scenario the labels do not carry any semantic
meaning. The same person should have the same label in different
batches, whichever the label. As such, when evaluating the perfor-
mance of our framework we are just comparing the partition of the
set of batches as defined by the reference labelling with the partition

obtained by the framework. Adopting a generic partition-distance
method for assessing set partitions, which is initially proposed for
spatial segmentations of images assessment [4], the accuracy is
formulated as:

Accuracy =
N−Cost

N
(14)

where N denotes the total number of batches, and Cost refers to the
cost, yielded by the assignment problem.

Annotation. Assume MLB and T B denote the manually labelled
batches and all the batches available during a period (includes one or
more time slots), respectively. The Annotation Effort is formulated
as:

Annotation effort =
#MLB
#T B

(15)

It is expected that the accuracy increases with the increase of the
annotation effort.

Area under the learning curve (ALC). is a standard metric in
active learning research that combines accuracy and annotation
effort into a single measurement, which provides an average of
accuracy over various budget levels. Herein, the learning curve is the
set of accuracy plotted as a function of their respective annotation
effort, a, Accuracy = f a. The ALC is obtained by:

ALC = ∫1
0 f ada (16)

6 RESULTS
To evaluate the effectiveness of the adaptation algorithm on the
size and accuracy of learning system, we compared our method
with three baseline approaches. Figure 4 illustrates the comparative
results across baseline approaches on multiple video datasets as a
function of number of classifiers. We can clearly observe from the
figure that keeping all the classifiers (denoted with red points) does
not bring an advantage for the system. Our wise update and add
strategy performs fairly well by keeping only a limited number of
classifiers. The number of the learners is a function of number of
classes that have been observed at the scene. For example, the system
obtained 90% ALC (which is the best ALC obtained for this set) by
keeping 21 models for the 7 classes present at “SAIVT-NonOver”
dataset. The average cost is 3 models per person. However the cost
increased for more occluded datasets (e.g. PETS with average cost
of 6 classifiers per classes), still the framework controls a dramatic
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T=8571

T=8385T=8275

T=8391

T=8411

(a) streams correspond to object #14

(b) Pair-wise entropy of the models present inside MCE #14 using
NEVIL.ubm

(c) Pair-wise entropy of the models present inside MCE #14 using
INEVIL

Figure 3: An example of micro-ensemble diversity using Model-Level adaptation mechanism

expansion of the size of the models without sacrificing or in some
cases (e.g. EnterExitCrossingPath1, OneLeaveShopReenter1) even
improving the performance.

A pair-wise distance between models inside an ensemble is ap-
plied as notion of diversity in this framework. Figure 3 shows an
example of the the micro-ensemble diversity corresponds to sub-
ject #14 using NEVIL.ubm (Figure 3b) and INEVIL (Figure 3c)
over time (horizontal axis denotes the frame number). Although the
number of the models has been dramatically reduced using INEVIL
(Figure 3c), range of diversity (difference between the minimum and
maximum distance) has not been changed.

All the codes and data is publicly available through the first
author’s website.

Time Efficiency. Since the framework was developed in MATLAB
without any efficiency concerns (running in an Intel Core i7 at
3.2GHz), a straightforward assessment of the time efficiency is not
adequate. Number of classes and drift level are two key factors of
the complexity. The complexity linearly increases as the number of
classes grows in time. The higher drift level occurs, the more models
is added to the framework. The experiments proved that if abrupt
drift happens all the time, a bigger ensemble is generated, however
it still manageable and does not explode. For a frame rate of 25fps,
one second is spanned by the batch in our experiments. The analysis
time grows naturally with the complexity of the dataset; however, the
maximum processing time of a second video for the most complex
dataset is less than half a second. Thus, the proposed framework is
applicable for surveillance in real time.
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(a) OneShopOneWait1 (b) EnterExitCrossingPaths1 (c) OneLeaveShopReenter1

(d) OneStopMoveEnter1 (e) WalkByShop1front (f) OneLeaveShopReenter2

(g) OneStopEnter2 (h) SAVIOT (i) PETS

Figure 4: Comparing the performance of mid-level fusion with late fusion on some video clips.

7 CONCLUSIONS
We presented a novel strategy for long-term learning of the patterns
of RoIs in various un-regulated streams. It employs an information
theoretic-based criterion to predict and evaluate the potential of cur-
rent knowledge (classifiers in an ensemble) to represent the new
data. We embedded our strategy in the active learning framework,
where the assessment triggers an adaptation process by either up-
dating or training a new classifier. We experimentally investigated
the impact of the proposed approach on accuracy and complexity
over an un-bounded time frame in various possible scenarios in a
multi-camera surveillance system. The results of our experiments
indicate the potential of our approach for on-line applications, as
they attained the promising performance with much lower runtime
complexity.

For future work, we plan to employ concentration inequalities in
order to make the query selection procedure wiser and automatic.
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