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ABSTRACT
Fault detection and isolation (FDI) is of paramount importance in
industrial settings that involve electric, mechanical, electronic or
cyberphysical systems. Data-driven approaches to FDI typically use
machine learning to classify a pattern of sensor readings as faulty
or healthy. Despite the buzz around Big Data, data scarcity is still an
issue in many situations, especially in industrial settings where data
collection can be time consuming or require unavailable/expensive
sensors. Exacerbating the data scarcity issue is the fact that differ-
ences between training and deployment settings preclude the direct
application of learned models in new settings. Moreover, data from
a new setting may be scarce, which precludes training a model
from scratch. For example, we may have more data from a given
machine, but need to do FDI for a different machine of the same
family, or the same machine but in a different deployment environ-
ment. In this paper, we address the problem of FDI across multiple
machines. We present a novel combination of 1) wavelet analysis
to extract useful features from time series data from accelerometers
mounted on a machine; and 2) manifold alignment, a well-known
heterogeneous domain adaptation approach, to do transfer learning
across different machines. Our results demonstrate that: 1) We can
leverage data from different deployments and different machines
to improve the accuracy of FDI in a new settings; 2) We can suc-
cessfully learn across machines even if one of them has missing
sensors and 3) We can improve learning accuracy by incorporating
domain knowledge into the manifold alignment approach. All our
experiments and reported results are based on sensor data from
real instrumented machines.
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1 INTRODUCTION
Despite the prevalence of Big Data, data scarcity is still an issue
in many situations, especially in industrial settings. While in In-
formation Retrieval and similar problems large volumes of data
are available (e.g., image databases), data collection in industrial
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settings can be time consuming, require expensive or unavailable
sensors or necessitate a well-trained work force.

Fault detection and isolation (FDI) is of paramount importance in
industrial settings that involve electric, mechanical, electronic or cy-
berphysical systems.With the increasing ability to instrument these
systems with a variety of sensors, FDI made the logical move from
rule-based approaches to data-driven. Data derived from sensor
readings obtained over time are processed in an attempt to distill
patterns associated with healthy operation or a given fault. Un-
supervised machine learning approaches operate without ground
truth labels of the particular faults associated with the collected
data and resort to clustering, whereby healthy behavior is assumed
to cluster together in some feature space, and similarly for faulty
behaviors. Supervised approaches require fault labels and treat the
problem as that of learning a classifier capable of mapping data
derived from sensor readings to the class corresponding to the fault
exhibited in the system, if any.

In almost any realistic application, differences between training
and test data preclude the direct deployment of learned models
in new settings. For example, in industrial settings we may have
more data from a given machine, but need to do FDI for a different
machine from the same family, or the same machine but in differ-
ent deployment environment. Bridging the gap between a source
dataset and a target dataset is the focus of Transfer Learning [12].
The difficulty of the transfer depends on how different the source
and target data distributions are. In covariate shift [6], one of the
simplest settings of TL, the source and the target datasets differ in
the distribution of the covariates, x but agree on the conditional
distribution of the label given the covariates P (Y |X ). Domain Adap-
tation (DA) goes a step further and drops the assumptions about
how the joint distribution P (X ,Y ) differs between the source and
target. However, DA assumes that the feature or covariate space is
the same across both datasets ([2, 4, 5].

Heterogeneous Domain Adaptation (DA) goes even a step further
and allows transfer between datasets whose covariates belong to
different feature spaces. HDA has been successfully used to do ob-
ject recognition on diverse image datasets, in addition to sentiment
classification and text categorization across multi-lingual corpora
[1, 14, 15, 17]. To our knowledge, HDA has never been applied to
time series data, or for the purpose of fault detection and isolation.

In this paper, we address the problem of Fault Detection and Iso-
lation using time series sensor data. We operate on time series data
from three accelerometers from two different machines we have
access to, where each machine is observed in 2 different settings.
From each accelerometer, we use wavelet analysis to extract fea-
tures for FDI. We then apply transfer learning to accommodate and
account for differences between training and deployment settings.
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The contributions of this paper are as follows:

(1) Using wavelets for feature extraction from time series data.
(2) Applying HDA to the FDI problem across different machines

and/or different deployment settings. We demonstrate im-
proved performance compared to only using data from the
new setting.

(3) Demonstrating the practicality and improved FDI perfor-
mance of HDA when some of the sensors readings are miss-
ing in the new setting.

(4) Incorporating simple domain knowledge into the HDA for-
mulation and demonstrating the resulting benefits compared
to the absence of domain knowledge.

This paper is organized as follows: Section 2 gives a brief back-
ground on Heterogeneous Domain Adaptation, manifold align-
ment and time series feature extraction. This section also gives
background on wavelet analysis and details our wavelet feature
extraction approach. Section 4 details the manifold alignment for-
mulation of the FDI problem with transfer across settings of the
same machine, different machines, different sensor sets, as well as
using domain knowledge to improve FDI performance. We then
summarize our contributions and discuss future work.

2 BACKGROUND
2.1 Heterogeneous Domain Adaptation
Heterogeneous Domain Adaptation (HDA) addresses situations
where we have 1 or more source datasets and the goal is to leverage
them to improve learning on a target dataset, despite the difference
in their feature spaces. One way of categorizing HDA approaches
is according to their need for labeled target data, where some ap-
proaches require few labeled points [1, 9], while others are unsu-
pervised and require only labeled points from the source datasets
[14].

Another categorization of HDA approaches depends on how
they calculate a) a transform of the source datasets that makes it
“look like” it came from the target distribution; or b) a transform
for each dataset, whether source or target, into a common space;
or c) a machine learning model (e.g., classifier) without explicitly
calculating or representing the data transforms.

The advantage of the first two types of approaches is that once
transformed, the distinction between source and target datasets
vanishes, allowing us to apply standard ML to the new combined
dataset and to leverage labeled source data [5, 10, 16]. Finding the
best transform amounts to solving an optimization problem. For
example, subspace methods [5] find the best projection matrices
to project source and target data to a common latent subspace.
Sparse dictionary coding methods [10] represent a point as a sparse
combination of codewords and transfer across domains by hav-
ing a shared codebook. Examples of optimization criteria include
preserving local geometry (unsupervised setting), preserving ge-
ometry with regards to labels (semi- and fully-supervised), and
matching empirical source and target covariate distributions (unsu-
pervised [5]).

Figure 1: HDA using MA to jointly project all datasets to a
common latent space.

2.2 Manifold Alignment
MA for correspondence. Manifold Alignment (MA) was intro-

duced in 2003 [7] where it was used to learn correspondences
between objects/points in different datasets with the aid of a low
dimensional representation. The algorithm trains on data consist-
ing of pairs of corresponding objects from 2 domains and during
testing, it discovers unknown correspondences between objects in
the test dataset. For example, one data set could consist of images
of an object taken from multiple viewpoints, and another data set
consists of images of a different object from different viewpoints.
Simple regression does not work because of the high dimensionality
of the original/raw feature space and the small number of given
correspondences.

MA for classification. In 2011, Wang and Mahadevan extended
MA for HDA, with the combined dataset used to do classifica-
tion [16]. Unlike the use of MA for correspondence, in classification
tasks have correspondences indicated by the class labels and the
goal is not to learn new correspondences, but to discover a com-
mon space in which the downstream machine learning task (e.g.,
classification) can be performed. Figure 1 illustrates this process.

Wang formulates the problem of finding a common latent space
to which the different datasets are projected as an optimization
problem. The goal is to find projection matrices, one per dataset,
that satisfy the following criteria:

(1) Preserving local neighborhoods within a dataset: if two
points in a domain are close in the dataset’s original fea-
ture space, their projections under the dataset’s projection
matrix should also be close.

(2) Class separability: if two points have different labels, they
should be projected to points far away in the latent space.
This should hold true regardless of the domains they belong
to.

(3) Class homogeneity: if two points have the same label, they
should be projected to points close together in the latent
space. This should hold true regardless of the domains they
belong to.
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The MA approach can therefore be seen as a preprocessing step
that acts on the datasets (both covariates and labels) by plugging
them into an optimization problem whose output is a set of projec-
tion matrices, one per domain. The original datasets are projected
using their respective matrices to give a combined dataset in the
latent space. This combined dataset is then used to train traditional
ML classifiers. During testing, points from the target dataset are
projected using the corresponding learned projection matrix into
the latent space, where the trained classifier operates on it.

Formally, theMA optimization problem has an objective function
made up of the following quantity:

A = µΣk Σi j ∥F
T
k xi − F

T
k x j ∥

2 Wk (xi ,x j )

B = Σkl Σi j ∥F
T
k xi − F

T
l x j ∥

2 Ws (xi ,x j )

C = Σkl Σi j ∥F
T
k xi − F

T
l x j ∥

2 Wd (xi ,x j )

For each domain k , Fk is its projection matrix andWk is the
similarity matrix defined over points in it.Ws is a matrix defined
for every pair of points, across domains, indicating whether they
belong to the same class.

Ws (xi ,x j ) = Ic (xi )==c (x j )

Wd is a similarly defined matrix indicating whether a pair of points
belong to different classes.

Wd (xi ,x j ) = Ic (xi ),c (x j )

Quantity A iterates over every domain k and tries to preserve
local neighborhoods. Quantities B and C iterate over every pair of
domains k and l and promote inter-class separability and intra-class
homogeneity. The goal is to minimize A and B while maximizingC .
The objective function is therefore

min
F1, ..Fm

(A + B)/C

With simple manipulation, it can be seen that the above can be
solved in closed form where the optimal F = [F1; F2; . . . Fm] is the
solution to the generalized eigenvalue problem

F (µL + Ls )F
T x = λFLdF

T x (1)

Where L =W − D is the combinatorial Laplacian matrix defined
over all pairs of points in all domains and Ls and Ld are Laplacians
obtained fromWs andWd , respectively.

Latent space dimensionality. In the MA approach, the user needs
to provide the dimension of the resulting latent space (i.e., the
dimension of the space that the matrices Fk project the data to). For
a chosen dimensionality d , we construct the projection matrices
from the first d eigenvectors of the eigenvector matrix F . Different
values of d will yield representations in different latent spaces, with
different ease of separability for the subsequent classification step.
Choosing the best value of d a priori is an open research problem.

MA vs PCA. It is useful to compare the MA-based HDA (Figure
1) to an HDA approach based on PCA (Figure 2) to project each
dataset down to the same dimension. This comparison highlights
the shortcomings of PCA compared to MA:
• PCA calculates the projection for each dataset independently
of the others, as opposed to simultaneously optimizing over
all projection matrices as in MA.

Figure 2: HDA using PCA to project all datasets down to the
same dimensionality.

• PCA does not make use of the labels when projecting, po-
tentially resulting in projections that obscure, rather than
enhance, differences between classes.

3 WAVELET FEATURE EXTRACTION
In the following sub-sections, we give some background material
on wavelets and the wavelet transform and briefly discuss their use
in related applications and the challenges therein. We then outline
how we extracted wavelet features for FDI.

3.1 The wavelet transform
The wavelet feature extraction method belongs to the linear time-
frequency representations family, where signals are decomposed
into a weighted sum of a series of bases localized in both time
and frequency domains [8, 11]. For example, the wavelet Short-
Time Fourier Transform (STFT) represents the signals in a time-
frequency-energy space so that the constituent frequency compo-
nents and their time variation features can be revealed. Unlike the
STFT approach, the wavelet transform employs wavelets, instead of
sinusoidal functions, as the basis, so it has a zooming and adaptive
windowing capability which makes it effective for time-frequency
localization, and is suited to transient signal analysis.

For a signal x (t ), the wavelet transform is defined as

WTx (t ,a) =
1
√
a

∫
x (τ )ψ

(τ − t
a

)
dτ

where waveletψ
(
τ−t
a

)
is derived by dilating and translating the

wavelet basesψ (t ), a is the scale parameters, t is the time shift and
1/
√
(a) is a normalization factor to maintain energy conservation.

3.2 Wavelet features for FDI
Whenever machines are running under time-varying conditions,
nonstationary signals are being produced where the task of FDI
becomesmore challenging since the fault signatures differ over time.
Time-frequency analysis can be used to identify the constituent
components of signals and their time variation, and thus reveal
the time variant features of the nonstationary signals [3]. In other
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words, a segmented short duration signal usually does not change
too much and hence can be assumed to be stationary.

Wavelet analysis has been widely used in machinery fault di-
agnosis. The wavelet transform was used to analyze the transient
features, extract the impulse characteristics or suppress the back-
ground noise of vibration signals to diagnose faults of turbo-machinery,
gearboxes, and internal combustion engines [19]. Peng and Chu sur-
veyed wavelet analysis and its applications in mechanical vibration
signal analysis [13].

For the impulse detection issue in localized fault diagnosis of
bearings and gears, the wavelet transform might be an effective
approach, because the energy of an impulse mainly concentrates
in higher frequency band and wavelet transform has fine time
localization in higher frequency band [3].

Despite the success of usingwavelet features, there are some chal-
lenges [3]. One of the main challenges is that the wavelet transform
suffers from a trade-off between time localization and frequency
resolution. The higher the resolution in time, the lower the resolu-
tion in the frequency domain and vice versa. Due to the trade-off
between time localization and frequency resolution, the resolutions
in time and frequency domains cannot reach their highest levels
concurrently.

The variable time localization and frequency resolution enables
the wavelet transform to zoom and adapt its window to suit non-
stationary signals. Wavelet transform iteratively decomposes the
approximation signals of lower frequency, but does not further work
on the detail signals of higher frequencies. For higher frequency
components, wavelet transform has a better time localization but
a lower frequency resolution. For lower frequency components,
the frequency resolution is higher whereas the time localization is
worse.

In order to mitigate this limitation, the multi-resolution wavelet
analysis was introduced, where multiple transforms with different
resolution tradeoffs are employed and combined to capture the
signal characteristics along the time and frequency scales [11].

3.3 Wavelets features from our accelerometers
For variety of fault types, accelerometer signals show both tem-
porally local and global characteristics. To capture this type of
multi-time scale behavior in a compressed fashion, we use multi-
resolution wavelet analysis (MRA) [11] for feature extraction from
signals collected by 3-axis accelerometers. A 2-level MRA generates
one approximate and 2 detail levels of coefficients that encapsulate
low frequency and high frequency contents from accelerometer sig-
nal segments. As the final step of feature extraction, the mean and
variance of the top coefficients from each of the three levels (1 ap-
proximate and 2 detail) are calculated and a six-dimensional feature
is obtained from a channel of 3-axis accelerometers. Therefore
each data point in this paper consists of 18 features.

4 WAVELETS AND MA FOR FDI
4.1 Data, metrics and baselines
Data
Our time series sensor data was collected from multiple sensors on
our machines. Wavelet transform was applied to the raw sensor

Table 1: Sizes of data sets for each machine and setting.

Machine Setting Number of points
M4 13 151
M4 15 157
M5 13 121
M5 14 123

data as discussed in Section 3. The resulting 18 wavelet features
are what we use to do fault detection and isolation.

The machines we have are called M4 and M5. M4 has data from
2 different settings; M4-13 and M4-15 while M5 has settings M5-13
and M5-14. The number of data points from each machine and
setting is given in Table 1.

Faults: Each data point is labeled as having no fault, which we
also refer to as F0, or having fault F3 or F5. The meanings of these
faults are specific to our machines and will be omitted.

Fault detection and isolation in our particular setting presents
the following challenges:

• The machines can have varying degrees of fault severity for
each type of fault. There is thus potentially large variation
within points having the same label, some of which may
look like baseline (fault-free) points.
• Different machines have different baseline behaviors and
may exhibit faults differently, precluding the straightforward
use of data across machines, even if they are equipped with
the same number and type of sensors.

Classifier
For the downstream FDI classification task, we used a weighted
KNN classifier with K=5. We set the weight of a training point
depending on its class. The goal of the weighting is to help rectify
the imbalance in the data where the number of faulty points far
exceeds the number of no-fault points. As such, each baseline point
was weighted at 1.5.
Metrics
In keeping with the HDA literature, the quality of an HDA approach
is measured by the performance of the downstream ML task. Since
FDI is a classification task, we use the following standard metrics:

• False alarm rate is the number of baseline points classified
as faulty. This measures the fault detection performance.
• Classification score is the fraction of correctly classified
points across all fault types and non-faulty points. This mea-
sures the fault isolation performance.

Other approaches

As discussed earlier, comparing MA-based HDA and PCA-based
HDA gives an appreciation of the importance of the supervised
joint projection done by MA, so we compare these 2 approaches.
Both PCA and MA have performance that depends on d , the user-
provided dimension of the latent space. As such, we ran experi-
ments that explore the FDI performance of the downstream clas-
sifier across the entire range of d , which is 1 to the maximum
dimensionality (18).
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Figure 3: Classification accuracy and false positive rate as a
function of latent space dimension. Train on M5-13 and test
on M5-14.

We also compare to an baseline approach which we refer to as
raw space baseline where we train the classifier on a dataset ob-
tained from naively combining the source datasets in their original
spaces without any transformation. This is of course only possi-
ble when the datasets have the same feature spaces. Essentially,
this baseline makes the naive assumption that all machines exhibit
faults, or lack thereof, in a similar manner.

4.2 Same machine, same setting
In this set of experiments, we investigate whether MA and PCA
can project data to a space where classification is easier. We train
and test on the same machine, but different settings.

Figures 3 and 4 show performance (classification score and false
positive rate) at different values of the dimension d for machines
M4 and M5. The black horizontal line shows the performance of
the classifier in the raw feature space where it is trained on the
original wavelet features of the training set and applied as-is to the
test set without projecting either set into any intermediate space.

We consistently found it harder to detect and isolate faults on
M4 than on M5, as can be seen by the lower score and higher false
positive rates in the figures. For M4 (Figure 4), FDI in the raw space
has 100% false alarm rate, which renders it useless. At d = 1, MA
projects the dat from M4-13 and M4-15 down to 1 dimension where
the classification accuracy drops to 50% but the false alarm rate
drops to 45%, which makes it a usable, albeit not very accurate,
approach.

For M5 (Figure 3), the best accuracy-false positive tradeoff is at
d = 4 for MA and d = 11 for PCA. As can be seen, MA raises fault
isolation accuracy from around 63% in the raw space to 85% in a 4D
space while reducing fault detection false positive rate from 50% in
the raw space to 33% in a 4D space.

From the figures, we can see that MA finds latent spaces that:

• Have much lower dimensionality (MA achieves its best per-
formance with only a 4D latent space)
• Enhance the distinction between baselines and the different
faults

As can be seen, performance is not monotonically increasing
in d , which makes the choice of d a priori impossible. In the rest
of this paper, we present the results of the “best” dimension for
each approach, where best is determined by manual inspection of

Figure 4: Classification accuracy and false positive rate as a
function of latent space dimension. Train on M4-13 and test
on M4-15.

Figure 5: Classification accuracy and false positive rate.
Train on M5-13 and test on M5-14.

a reasonable trade-off between the 2 evaluation metrics. We will
report results of MA vs. PCA as in Figure 5.

4.3 Transfer across machines equipped with
the same sensors

Given the challenging nature of learning an FDI model machine
M4, we investigated whether including some data from machine
M5 can improve learning performance. Specifically, our experiment
compares learning performance when testing on M4-15 data after
training on M4-13 only vs. training on M4-13 and M5-13.

Doing MA on M4-13 gives projection matrix PA4−13. Doing MA
on M4-13 and M5-13 gives projection matrices PB4−13 and P5−13.
Figure 6 shows the process of combining data. We then apply PA4−13
and PB4−13 to data from M4-15 and compare FDI classifier perfor-
mance. The results are shown in Figure 7. Despite the difference in
machines, including data from M5 significantly reduced the false
alarm rate, essentially taking a model that was unusable (70% false
alarms) and making it usable.

4.4 Transfer across machines equipped with
different sensors

In the next set of experiments, we demonstrate the ability of our
approach to leverage data that has a different feature space. This is
particularly useful for transfer across machines fitted with different
sensors, or in the case of some machines losing one or more sen-
sors. In our setting, we investigate whether we can leverage data
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Figure 6: Training and testing on data combined from mul-
tiple machines through manifold alignment

Figure 7: Effect of transfer across different machines on per-
formance. Training on M4 only (left) vs. training on M4 and
M5 (right)

from machines that have a more âĂIJcompleteâĂİ set of sensors to
augment data from, and improve performance on, machines that
lack these sensors.

In order to test this, we simulated sensor loss by removing the 6
wavelet features associated with x-axis accelerometer on machine
M4, which leaves us with 12 out of the original 18 features. We
append the name of a dataset that is missing its x-axis accelerometer
features with (-X).

As can be expected, performance dropped. The left and center
sets of bars in Figure 8 show that without the x-axis features, the
false alarm rate rose from 70% to 80%. Including data from M5-13,
which has a full set of sensor features, greatly increased learning
accuracy, bringing down the false alarm rate to 10% at the expense
of some loss in accuracy.

Low dimensional space: Because MA can achieve good per-
formance in a 2D latent space, we can visualize our training and

Figure 8: Effect of transfer across different machines with
different sensors on performance.

Figure 9: Data from the cross-machine setting plotted in the
2D latent space found by manifold alignment.

test data in this new space as in Figure 9. This low dimensionality
is a very useful by product of using MA that can shed light on
which faults are likely to be difficult to distinguish and how the
training and test datasets differ. Additionally, by inspecting the
entries in the 2 eigenvectors used in the projection, we can also
understand which features are most indicative of the underlying
fault. In our setting, for example, the first of the 6 z-axis feature had
a significantly larger entry than the rest, indicating its importance
in learning a representation that aids in the classification task.

4.5 Transfer with domain knowledge
In many settings, domain experts or physics-based models can pro-
vide insights about how a new learning task differs from previous
ones long before any data can be collected from it. In our previous
work, we demonstrated increased data efficiency and improved
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learning performance from incorporating different types of high-
level domain knowledge into a transfer learning framework that
focused on the covariate shift and functional change settings [18].

Going back to the challenging learning task posted by machine
M4, we investigated whether there are any domain-specific “hints”
we can give the MA algorithm to help it project the data to a space
where classification performs well.

One important observation is that differences between labels
are not all equal. In our setting, the engineers and maintenance
crew of the machines care very much about distinguishing baseline
from faulty units, but perhaps not as much about distinguishing the
different types of faults. As such, we can manipulate the penalty
terms in the objective function to placemore emphasis on projecting
baseline points further away from all the faults. Note that this is
different from, and serves an orthogonal purpose to, the weighting
applied to the instances when running the KNN classifier. In the
latter, baseline points are given more weight to compensate for the
class imbalance resulting from most of the data coming from faulty
machines.

Mathematically, we originally have the following terms in the
objective function:

C = ΣklΣi j ∥F
T
k xi − F

T
l x j ∥

2Wd (xi ,x j )

whereWd (xi ,x j ) = Ic (xi ),c (x j ) is a matrix of binaries.
Based on domain knowledge, we changed an entryWd (xi ,x j )

to depend on the labels of xi and x j . For points xi ,x j (potentially
from different datasets), we defineWd (xi ,x j ) = c (xi ) == c (x j ) if
both points are labeled as faults andWd (xi ,x j ) = v > 1 if one point
is baseline and the other is a fault. The above associates a higher
penalty v > 1 for projecting a baseline point close to a faulty point
and a lower penalty of 1 for projecting two points with different
faults close to each other.

We experimented with the above modified formulation using
v = 3. The results shown in Figure 9 demonstrate that placing more
emphasis on separating baseline and faulty points decreased the
false alarm rate to below 10% while slightly increasing classification
accuracy.

The advantage of the MA approach is that it admits this type
of manipulation of the penalty terms in the objective function to
incorporate domain knowledge. For example, if there are certain
types of points that we want to distinguish, we can customize the
construction of the difference matrixWd even further.

5 CONCLUSION
In this paper, we address Fault detection and isolation (FDI) in an
industrial settings where differences between training and test data
preclude the direct deployment of learned models in new settings.
Moreover, data from a new setting may be scarce, which precludes
training a model from scratch.

We operate on time series data from accelerometers mounted
on machines deployed in different settings. The goal is to learn a
model that detects whether a fault and classify it if it exists. We
show how we extract wavelet features from the time series data
using multi-resolution wavelet analysis. We then show how we
applied manifold alignment, a well-known heterogeneous domain
adaptation approach, and demonstrated successful leveraging of
data from different deployments and different machines to improve

Figure 10: Effect of including of leveraging both domain
knowledge and data from M5 on learning performance for
M4.

the accuracy of FDI in a new settings.We also showed the possibility
of doing this across machines with different sensor. Finally, we
showed that incorporating domain knowledge into the manifold
alignment approach leads to further improvement in performance.
All our experiments and reported results are based on sensor data
from real instrumented machines.

For future work, we can explore the use of non-linear manifolds,
which relaxes the assumption that the datasets, when mapped to a
new latent space, must lie on a linear manifold, and can therefore
broaden the applicability of the method. We will also explore in-
corporating different types of domain knowledge into the learning
framework, either through regularization terms in the objective
function, or constraints.
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