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ABSTRACT
Ensemble forecasting has seen wide applications in social and phys-
ical sciences. Conventional methods are parametric and require
the user to be knowledgeable about the types of error distributions
involved. In this paper, we develop a nonparametric method that
allows us to combine forecasting models with general error dis-
tributions. We applied the method to the Wikipedia Web Traffic
Time Series Forecasting dataset, which is public and can be down-
loaded from Kaggle (https://www.kaggle.com/c/web-traffic-time-
series-forecasting). We compare the proposed method to two of the
most popular ensemble methods, Ensemble Model Output Statistics
(EMOS) and Bayesian Model Averaging (BMA). We show that the
proposed method yields more accurate forecasts for the page views
of low traffic Wikipedia articles.

CCS CONCEPTS
• Applied computing → Forecasting; • Computing method-
ologies → Ensemble methods; Kernel methods;
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1 INTRODUCTION
Forecasting plays a crucial role in planning and logistics. It is com-
mon in practice that more than one forecasting models were de-
veloped for the prediction of the quantity of interest. Bates and
Granger [4] were among the first who pointed out that combining
multiple forecasts with proper weights could yield a result that is
superior (in the sense of accuracy and stability) to each component
forecast. Since the publication of reference 3, the field of forecast
combination has received much attention. Various methods have
been developed and studied. For example, Regression-based meth-
ods [9, 13–15], Bayesian methods [5, 6, 17]; more recently, Artificial
Neural Network (ANN)-based methods [2, 12]. We refer the readers
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to a few excellent reviews for an introduction to the field [3, 7, 8, 19].
In the literature, the science of combining forecasts is sometimes
referred to as “ensemble forecasting” [13, 17], reminiscent of the
ensemble methods in the field of Machine Learning. We will use
the two terminologies interchangeably in this paper.

The existing methods of forecast combination can be encapsu-
lated by the following formula:

FT = G (w, f1T , f2T , . . . , fNT ) (1)

where f1T , f2T , . . . , fNT are the forecasts for time T from the N
component forecasters in the ensemble andw is a vector of arbitrary
length (it is in general of length N , but can be of any length in
ANN-based methods). The general procedure to obtain FT can be
summarized as follows:

(1) Historical actuals {at | ∀t ∈ N∗<T } and historical forecasts
{ fkt | ∀k ∈ N

∗
≤N , ∀t ∈ N

∗
<T } is collected.

(2) A training scheme is applied to determine w.
(3) An ensemble forecast FT is generated with w and all of the

component forecasts that is made for time T ({ fkT | ∀k ∈
N∗
≤N }) through the use of equation 1.

We note in most cases (such as in Regression-based methods and
in Bayesian methods), equation 1 is reduced to

FT =
N∑
k=1

wk fkT (2)

where fkT , the forecast from the kth forecaster, can be either a real
number [15] or a probabilistic distribution [17].

In general, a training scheme for w should not be taken as an
one-size-fits-all solution for an ensemble that the user first en-
counters. Its effectiveness depends on the characteristics of the
component forecasters, their interrelations, as well as the nature of
the dataset. For example, Ordinary Least Squared-based Ensemble
methods work well when the residuals are uncorrelated, having
expectation zero and equal variances (Gauss-Markov Theorem)
but could perform less-than-ideal otherwise. In recent implementa-
tions of parametric ensemble models (e.g., R packages for Bayesian
Model Averaging (BMA) [18] and Ensemble Model Output Statis-
tics (EMOS) [21]), users are allowed to specify the family of error
distribution. However, the users are still faced with the difficulty of
choosing the correct error distribution a priori. It is thus desirable
to develop a method that does not require such knowledge.

In this paper, we develop a nonparametric method to fulfill the
aforementioned purpose. We provide a general description based
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on two-dimensional Gaussian error in section 2, followed by a
simulation-based study in section 3. The method is applied to the
Wikipedia Web Traffic dataset in section 4. Concluding remarks are
provided in section 5.

2 DESCRIPTION OF THE PROPOSED
NONPARAMETRIC METHOD

We introduce the relevant terminologies (item 1 and item 2) and
assumption (item 3):

(1) The Data Generation Process (DGP) is a random process
which follows a (in general time-dependent) PDF at each
time-period.

(2) At any time-period, each forecaster in the ensemble has
its own (random) Forecast Generation Process (FGP) that is
shaped by the DGP and the forecaster’s own skill/disposition.
A forecast is a realization of the FGP.

(3) Given N forecasters, the differences between the actual (i.e.,
a realization of DGP) and (a total of N) forecasts follow an
N -dimensional Joint-PDF that does not change over time.

We note that item 3 is a much-relaxed assumption in comparison
to that of the parametric Ensemble methods. No assumption about
the error distribution is made other than that it does not evolve
with time. Hence, the proposed method can be generalized to cases
where the error distribution is either unknown or has no explicit
mathematical expression.

The basic idea of the proposed method can be separated into
three steps:

(1) Summarize the past errors of the base forecasters into a
numerical N -dimensional Joint-PDF (which will be referred
to as a Joint-error PDF from now on) in the Ensemble training
stage. One of the means to achieve this goal is through the
use of Kernel Density Estimation (KDE).

(2) In the prediction stage, when a simultaneous set of future
forecasts are given, the Joint-error PDF is used to generate a
likelihood function of the (yet unrealized) actual.

(3) Methods such as Maximum Likelihood Estimation (MLE) or
minimization over a loss functional [11] are then applied to
transform the likelihood function into a point forecast.

We will illustrate and explore the idea through a series of concrete
examples throughout the paper. We note that the use of KDE is
not a necessity when circumstances permit, as will be explored in
section 4.

For simplicity, we consider the case where the DGP is a sinusoidal
function of time without uncertainty, i.e., at = 10 sin(τ (t )) (τ (t ) is
a linear function that maps t ∈ N∗ to the equally-spaced sequence
of τ ∈ R). This case is the limit where the PDF of the DGP is a Dirac
delta function whose location evolves sinusoidally with time. For
the ease of illustration, we set the ensemble to consist of only two
forecasters whose errors are Gaussian and correlated. Specifically,

ϵ1t ≡ f1t − at (3)
ϵ2t ≡ f2t − at

[
ϵ1
ϵ2

]
∼ N (µ, Σ)
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Figure 1: Plot of the realized actual of the time-series (black
solid line), the past forecasts from forecaster 1 (green dots),
and that from forecaster 2. We only plot the past forecasts
from 20 time-periods to make the plot easier to read. The
black dashed line represents the DGP for the future.

we refer the readers to appendix A for the parameters (i.e., µ, Σ)
adopted and the details of numerical results.

A pseudo-random number generator is used to simulate the
forecasts from the two forecasters 5500 times in total. The first
5000 pairs of forecasts (0 ≤ τ < 10) are used for training and
the remaining 500 pair of forecasts (10 < τ ≤ 11) are used for
testing. The actual (solid black line) and the past forecasts from the
ensemble members are plotted in figure 1. The green dots represent
the forecasts from the more skillful forecaster while the blue dots
represent those from the less skillful one. As expected, each pair of
dots is often located at the same side of the solid black line due to
its correlations.

The forecasting skills of the two forecasters and the error corre-
lation thereof are made more apparent in figure 2. In the plot, each
(translucent) blue dot represents a pair of simultaneous forecasts
from the ensemble members. The x-coordinate of a blue dot denotes
the forecast value from forecaster 1 (f1, represented by green dots
in figure 1) while the y-coordinate denotes that from forecaster 2
(f2, represented by blue dots in figure 1).

In order to find the Joint-PDF p (ϵ1, ϵ2) that the errors in the
forecasting ensemble follow, we adopt a 2-dimensional Gaussian
Kernel and apply KDE to the blue dots (with bandwidth selected by
cross-validation least square method). The result, represented by a
set of contour lines, is plotted over the blue dots in figure 2 (this
concludes step 1).

With p (ϵ1, ϵ2), we are able to calculate the likelihood function of
the (yet unrealized) actual. Suppose the forecasting ensemble makes
a pair of base forecasts ( f1T , f2T ), where T represents a future
time. We notice, by the definition of p (ϵ1, ϵ2), that the likelihood
of s ∈ R being the actual is l (s ) = p ( f1T − s, f2T − s ). Namely,
the value of p (ϵ1, ϵ2) taken at ( f1T , f2T ) when the function is re-
centered to (s, s ). The process of making a nonparametric ensemble
forecasting is thus visualized in figure 3. In the upper panel, the
point ( f1T , f2T ) is denoted by the red star-shaped symbol and the
point that corresponds to one of the possible s (s1) is denoted by the
blue solid dot located at (s1, s1). The re-centered Joint-error PDF is
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Figure 2: Kernel Estimation of the Probability Distribution
Function for Joint-errors. Each translucent blue dot repre-
sents a pair of errors in the training period. The contour
lines represents the KDE found by using Cross-validation
least square method.

represented by the set of the blue contour lines. The value which
the re-centered Joint-error PDF takes on ( f1T , f2T ) can be inferred
from the two blue contour lines that brackets the red star-shaped
symbol and is the y-value of the blue solid dot in the lower panel
(this concludes step 2). The maximum of this likelihood function
of s (denoted by the orange solid dot in both panels) can be found
using various optimization algorithms such as that of Nelder and
Mead [16] along an auxiliary line:




x = s

y = s
s ∈ R

and can be served as a point forecast from the ensemble. In practice,
however, one often found that the likelihood function is asymmetric
around themaximum. It could result from the fact that the estimated
likelihood has a plateau and (hence) the maximum is determined
by noise (such as the case in this example), or simply because
the likelihood function is inherently asymmetric. As a result, the
point where maximum likelihood takes place does not necessarily
represent an intuitively-proper point forecast. In such cases, we
adopt a loss function L(q, s ) and report the point forecast as the q
where the action

a(q) =

∫
L(q, s ) l (s ) ds (4)

is minimized [11]. The point forecast q∗ generated with a quadratic
loss function L(q, s ) = (q−s )2 is denoted by the orange dash-dotted
line in the lower panel (this concludes step 3). While the point
denoted by the blue solid dot (s1, s1) is used for illustrative purpose
and need not bearing a specific value, we’ve chosen s1 = f1T in
figure 3. Thus, the y-value of the blue solid dot in the lower panel
is the likelihood that the actual matches the forecast from the first
forecaster. Likewise, we repeated the process for s2 = f2T and
denoted the associate points and contour lines in green. It is worth
mentioning that, when the joint-error PDF is symmetric along the
line y = −x , the point forecast that yields maximum likelihood is
exactly the arithmetic mean of the two base forecasts, 12 ( f1T + f2T )
(the red solid dot in the upper panel). One such case is when the

two forecasters have equal variances and no correlation. In this
simplistic case, our result reduces to that of Bates and Granger [4].
We note that the red solid point is also the point on the auxiliary
line that is closest to the red star-shaped symbol (the point which
represents the pair of base forecasts). The arithmetic mean of the
two base forecasts is denoted by the red dash-dotted line in the
lower panel. One can see that it does not coincide with either the
argmax of the likelihood (x-value of the orange solid dot) or the
parameter q∗ that minimizes the aforementioned action (denoted
by the orange dash-dotted line) in general.

The method can be easily generalized to N -dimensions:
(1) In the first stage, forecast errors from the past are collected

for each forecaster. At each period, the predictions from all
forecasters (assume there are N of them in total) form an
N-dimensional point. Assume there areK periods in the past,
we thus obtain a total of K points in an N -dimensional space.

(2) In the second stage, an N -dimensional kernel is introduced
to estimate the Joint-PDF of the error distribution. In this
stage, the error from each forecaster and the correlation
thereof are explored and summarized in a numerical PDF.

(3) In the final stage, we make an ensemble forecast as follows:
• Define the numerical error PDF calculated from the second
stage to be

p (ϵ1, ϵ2, . . . , ϵN ) (5)
and denote the actual value of the forecasted quantity (yet
unknown) to be s . The joint probability function P of the
actual value being s and the component predictions being
(x1,x2, . . . ,xN ) is thus

P (x1,x2, . . . ,xN , s ) = p (x1 − s,x2 − s, . . . ,xN − s ). (6)

We note that equation 6 can be interpreted as the trans-
portation of equation 5 along the line of unit slope in
N -space:

{xk = s, k ∈ N
∗
≤N , s ∈ R} (7)

• Given a simultaneous set of component forecasts
f1T , f2T , . . . , fNT , the likelihood function of s is

l (s ) = P ( f1T , f2T , . . . , fNT , s ) (8)

where the first N-slots of P are fixed. The maximum likeli-
hood estimation of the actual value (or alternatively, the
point that minimizes the action) can be found numerically.
• Denote the marginal PDF for the kth forecaster’s error as
pk (ϵk ). When all errors in the ensemble are independent
to each other, equation 5 takes the form of

p (ϵ1, ϵ2, . . . , ϵN ) =
N∏
k=1

pk (ϵk ) (9)

Simplifications such as equation 9 are necessary for large N cases
since the sample size (S) needed to maintain a fixed mean squared
error (MSE) of a nonparametric density estimator grows exponen-
tially with N [20]:

S ∝ (
c

δ
)N /4 (10)

where c is a constant greater than zero and δ being the MSE.
What we have described in this section are the details of how to

generate an ensemble forecast, given a set of the base forecasts at a
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Figure 3: An example using the proposed method. UPPER:
Base forecasts are given by members in the (N = 2) ensem-
ble and are denoted by the enlarged red star-shaped sign (de-
fine its coordinate to be x∗). We evaluate the joint-PDF of
errors at x∗ when it is centered at (s1, s1) [blue dot and con-
tour lines] and (s2, s2) [green dot and faded green contour
lines] respectively. The value is by definition the likelihood
density of s when s = s1 and s = s2. LOWER: All points
on the line of unit slope (x1 = x2 = s) in the upper panel
can yield a likelihood density that is generated in the afore-
mentioned procedure. The full likelihood density function
is represented by the solid black line. The point that cor-
responds to the maximum likelihood estimation is marked
in orange. The three colored points (blue, orange, green) in
the upper and lower panels have an exact one-to-one corre-
spondence. Alongside the blue and green points are their re-
spective s-value and the corresponding likelihood. We note
when the joint-error PDF is symmetric along the liney = −x ,
theMLE reduced to the closest point between x∗ and the line
x1 = x2, which can be shown to be (

x ∗1+x
∗
2

2 ,
x ∗1+x

∗
2

2 ). In the no-
tation of equation 2, F = 1

2 f1T +
1
2 f2T .

specific time T . In section A.1, we show how the proposed method
performs in comparison to EMOS and BMA on the 500 testing data
points under the settings of equation 3.

3 SIMULATION STUDY: FORECASTING
ENSEMBLE WITH UNIFORM ERROR
DISTRIBUTIONS

In this section, we apply the proposed method to the case where
the forecasters’ error distributions are independent and uniform,
i.e., where the PDF for each forecaster has the following form:

pk (ϵk ) =
1

2ηk
(H (ϵk + ηk ) − H (ϵk − ηk )) (11)

where H is the Heaviside step function, and ηk is the half-width of
the uniform error. We construct the forecasting ensemble to consist
of six members, i.e., k = 1, 2, . . . , 6 and listed ηk in section A.2.
The setup of the study is otherwise kept as close as possible to
that described in section 2. Namely, our DGP remains to be the
sinusoidal function and the training data contains 5000 sets of past
forecasts (0 ≤ τ < 10). The proposed method is compared with
other methods on 500 sets of testing forecasts (10 < τ ≤ 11).

If we apply the proposed method directly with equation 6, we
would need a total of 12.5 billion sets of past forecasts to make the
estimated Joint-error pdf as accurate as that estimated in section 2
(cf. equation 10). Since a time series dataset of such order of magni-
tude is rare in practice, we must take simplifications such as that in
equation 9 to render the task feasible.

As mentioned in the introduction, the family of error distribution
needs to be specified when using a parametric model. Given that we
are benchmarking the proposed approach with the popular ensem-
ble method implementations BMA [18] and EnsembleMOS [21], we
need to be consistent in this distribution assumptions. We therefore
proceed with the option “gaussian” as it is considered to be the most
natural choice when facing an unknown distribution. We empha-
size that the proposed nonparametric method has zero knowledge
about the error distribution a priori. Thus, this setup mimics the
case where one deals with an ensemble of forecasters whose FGP
is unknown to all of the ensemble algorithms (whereas in section 2,
the BMA and EMOS procedures took the advantage of knowing
the type of underlying error distribution beforehand).

An example of a nonparametric ensemble forecast construction
(forecast for τ = 11) in this setting is visualized in figure 4. With the
simplification of equation 9, the six-dimensional PDF along the line
of {xk = s, k ∈ N∗

≤6, s ∈ R} is reduced to the product of six one-
dimensional PDFs. The estimated value of the six one-dimensional
PDFs and the product thereof is denoted by six faded lines and a
thick solid black line respectively. We can see that the ensemble
makes a much sharper forecast than each of the base forecasters.

Details of the simulation parameters and the comparison of
performance among different forecasting scheme is provided in
section A.2.

4 THEWIKIPEDIA WEB TRAFFIC DATASET
Weapply the proposedmethod to theWikipediaWeb TrafficDataset
(https://www.kaggle.com/c/web-traffic-time-series-forecasting/data).
Each time series in this dataset represents a number of daily views



A Nonparametric Approach To Ensemble Forecasting MiLeTS18, August 2018, London, United Kingdom

−2.0 −1.5 −1.0 −0.5 0.0 0.5

s
0

5

10

15

20

25

30

35

40

p1(f1T − s)
p2(f2T − s)
p3(f3T − s)
p4(f4T − s)
p5(f5T − s)
p6(f6T − s)∏5

k=1 pk(fkT − s)

Figure 4: pk ( fkT − s ), k = 1, 2, ..., 6 and
6∏

k=1
pk ( fkT − s ) are plot-

ted in the samefigure. Themarginal likelihood density func-
tion of each forecaster is centered at their point forecast fkT
while the width of the distribution measures its past perfor-
mance. The product of all of the individual density function
is represented by the thick black line (cf. legend). It has been
normalized such that it integrates to one.

of a different Wikipedia article for a specific type of traffic (all, mo-
bile, desktop, spider), starting from July 1st, 2015 up until December
31st, 2016 – a total of 550 days. We take the first 507 days (July 1st,
2015 to November 18th, 2016) as the training period (note that the
first seven days of the data are only used for generating the first set
of base forecasts and are not used for training the ensemble) and
test different forecasting schemes on the last 43 days (November
19th, 2016 to December 31st, 2016).

We consider an ensemble that consists of two forecasters. The
first forecaster forecasts the next day’s traffic by looking back that
of the past seven days (including the day when it conducts the
forecast) and picks the median as its forecast. The second forecaster
takes the traffic one week prior to the next day (i.e., six days ago)
to be its forecast for the next day. Thus, all of the forecasts (and
errors thereof) in this ensemble are integers. If we view the Joint-
error PDF on a two-dimensional plane, the PDF only takes values
on the grid points. Hence, smoothing with KDE is not needed in
this setting. A two-dimensional histogram of the past errors would
suffice for our purposes.

We focus on the low traffic websites in English, which are those
websites with the domain name “en.wikipedia.org” and with a max-
imum daily view count less or equal to 50 on/before the last day
of the training period (November 18th, 2016). We exclude time se-
ries of the traffic type “all” since such traffic includes both mobile
and desktop traffic. In addition, we exclude the time series with
one or more zero values since the dataset does not distinguish be-
tween traffic values of zero and missing values [1]. This left us with
nine time series. Since the remaining nine time series are quanti-
tatively similar, the errors that the forecasting ensemble made by
forecasting them can be viewed as i.i.d.. In figure 5, we visualize
the 2d-histogram of errors from the two forecasters (which is an
estimate of the Joint-error PDF). The training data set contains 4500

40 20 0 20 40

40

20

0

20

40

Figure 5: UPPER: The histogram of errorsmade by base fore-
casters in the training period for the Wikipedia Web Traffic
Dataset. It contains 4500 points. Darker spots in the plot im-
plies a higher count for its associated error pair. LOWER:
The histogram of the errors made by base forecaster in the
testing period is over-plotted on that in the training period.
The four outliers are too far away from the plotted region
and is not shown. We note that “training” and “testing” in
the current context here means the training and testing of
ensemble methods, and should not be confused with that of
base forecasters.We assumed all base forecasters are already
trained and are not updated during the process of training
ensemble.

points (9 time series with 500 data points each). It can be observed
that the two dimensional distribution deviates rather significantly
from the Gaussian distribution.

The process of making an nonparametric ensemble forecast in
this case is quite similar to that described in section 2 and 3. The
only difference being that the Joint-error PDF is no longer a smooth
function. Rather, it is a function that only takes value on integer
points. In terms of equation 4,

l (s ) =
K∑
k=1

G ( f1T − sk , f2T − sk ) δ (s − sk ) (12)

where K is the total number of grid points that have non-zero
values, G the two-dimensional histogram, and δ (s ) is the Dirac
Delta function. We show G ( f1T − sk , f2T − sk ) as a function of
sk ∈ Z in figure 6.

When making the forecasts in the testing period, we found very
large root mean squared error (RMSE) (∼ 15620) across all forecast-
ers. Looking into the data, we found that RMSE is mainly driven
by a few outlier points.
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Figure 6: G ( f1T − s, f2T − s ) where f1T = 3 and f2T = 7. This
shows the likelihood of the unrealized actual being s. Note
that the PDF is the sum of some Dirac Delta functions and
the histogram represents the coefficients thereof.

For example, the webpage https://en.wikipedia.org/wiki/Bar_bet
has a desktop web traffic of 301627 on December 1st, 2016 (that of
the previous day is only 28). This could be traffic triggered by news
events, internet memes, or could be a data issue. When we compare
the different forecasting schemes, the proposed method has the best
accuracy (with outliers included). After removing the four outliers,
the RMSE of all forecasting scheme reached the order of 20, and
the proposed method remains the most accurate (22). When we
calculate the Z-score, we found the proposed method is 1.2 standard
deviations from BMA and 1.85 standard deviations from EMOS. It
is also the only ensemble method that performs better than both
base forecasters. In the right panel of figure 5, we over-plot the test
errors (excluding outliers) on the Joint-error PDF estimated with
the training data. We found that they largely overlap.

5 DISCUSSIONS AND CONCLUSIONS
In this paper, we proposed a new approach to the problem of en-
semble forecasting. While the existing ensemble methods focus
on finding some combination weights of the forecasted values, the
proposed method focuses on exploring the N-dimensional PDF of
the base forecast errors in a numerical fashion. Depending on the
type of numerical numbers one forecasts, implementations differ
slightly. Specifically, when the forecasts from the base forecasters
are continuous numbers, KDE is used to estimate the underlying
PDF. When the base forecasters produce only discrete numbers,
one can also use an N-dimensional histogram for estimation.

A likelihood function of the actual is generated as an interme-
diate step of the proposed method, which grants one additional
flexibility in forecasting. Sometimes, the purpose of forecasting is
not to minimize MSE but to minimize a subjective risk of the fore-
caster. By introducing a customized loss function in equation 4, this
purpose can be easily fulfilled (cf. Diebold [10]). For example, when
planning for power supply, the forecaster might determine that
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Figure 7: The use of customized loss functions. In all plots,
the blue bell-shaped line represents the likelihood func-
tion that is found with the proposed method. UPPER LEFT:
The green dashed line represents the quadratic loss func-
tion which we use in this work. In the plot, the parame-
ter q (marked out with the red dotted vertical line) is set to
be 2.5 for illustrative purposes. UPPER RIGHT: The green
dashed line represents a customized (asymmetric) quadratic
loss function that makes the forecasters prefer overestima-
tion to underestimation. LOWER:When the customized loss
function is used, the arдmax of action shifted from the solid
red vertical line to the dashed light-blue line, which implies
a higher forecast.

the costs associated with overestimating future power usage are
smaller than that associated with underestimation (since underesti-
mation could result in an electric outage). He or she can introduce
an asymmetric loss function (cf. figure 7) which would push the
ensemble forecast higher, reducing the risk of power outage.

We have shown that the proposed method achieves comparable
accuracy to conventional methods when the underlying error dis-
tribution is Gaussian (cf. section 2) and achieves superior accuracy
when the underlying error distribution is generic (cf. section 3). In
real settings such as the Wikipedia Web Traffic Data, the assump-
tion of the proposed method does not firmly hold in the sense that
the error distribution of the testing dataset is different from that
of the training data set. However, the proposed method showed
robustness and remains more accurate than the conventional meth-
ods.

The biggest challenge of the proposed approach is the require-
ment to obtain sufficient amount of data to control the error of the
nonparametric density estimators. This is hopefully less of an issue,
as the amount of data collected increases exponentially every day.
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A DETAILS OF THE NUMERICAL
EXPERIMENTS

We describe the numerical details of the three use cases for easy
references.

A.1 Experiment 1: Two-dimensional Gaussian
Joint-error PDF

In this experiment, the underlying mean and covariance matrix
used to generate data is

µ =

[
0
0

]
Σ =

[
2 1.5
1.5 2.25

]

The statistics of the training sample (S = 5000) is as follows:

µ̂in =

[
−0.0286
−0.01

]
Σ̂in =

[
1.97 1.47
1.47 2.24

]

The performance of various forecasting scheme on the testing sam-
ple (S = 500) is as follows:

Rank Description MSE
1 EMOS 1.87
2 This work (action minimization) 1.88
3 BMA 1.95
4 This work (maximum likelihood) 2.00
5 f1 2.17
6 f2 2.18

We can further conduct a paired Z-test between this work (action
minimization) and other forecasting methods:

Paired Forecasting Method Z-score
f1 -4.92
f2 -3.49

BMA -1.43
EMOS 0.24

We found the proposed method has comparable performance to
EMOS and is better than BMA and the base forecasters.

A.2 Experiment 2: Six Forecasters with
Independent Uniform Errors

In this experiment, the underlying half-width (η) of the forecasters
are:

Parameter f1 f2 f3 f4 f5 f6
µ 0 0 0 0 0 0
η 0.20 0.25 0.28 0.50 0.70 0.80

The statistics of the training sample (S = 5000) are extremely
close to the underlying parameters (the deviation in µ is ∼ O (10−3)
and that in η is ∼ O (10−4)) and we shall omit here. The performance
of various forecasting scheme on the testing sample (S = 500) is as
follows:

Rank Description MSE
1 This work 0.003893
2 EMOS 0.005622
3 BMA 0.005704
4 f1 0.013043
5 f2 0.019991
6 f3 0.027044
7 f4 0.082629
8 f5 0.165969
9 f6 0.195908

When we conduct paired Z-test, the result are as follows:

Paired Forecasting Method Z-score
f1 -16.68
f2 -18.61
f3 -21.70
f4 -23.08
f5 -24.64
f6 -23.68

BMA -8.58
EMOS -8.52

We conclude that the proposed method performs better than all
other methods in this setting.

A.3 Application to Wikipedia Web Traffic
Dataset

For this application, we use RMSE in the tables (instead of MSE)
since the MSE is very high due to the outliers (cf. section 4). The
paired Z-test is still conducted on the paired difference of squared
error between this work and other methods. The RMSE of various
forecasting method with the outliers included are as follows:

Rank Description
√
MSE

1 This work 15620.205859
2 BMA 15620.228509
3 f2 15620.244895
4 f1 15620.355319
5 EMOS 15620.496817

When we conduct paired Z-test, the results are as follows:

Paired Forecasting Method Z-score
f1 -1.057362
f2 -1.037428

BMA -1.079681
EMOS -1.031325

After removing four outliers, RMSE becomes:
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Rank Description
√
MSE

1 This work 22.244917
2 f2 23.042732
3 BMA 23.572635
4 f1 24.324199
5 EMOS 24.697943

The results for the paired Z-test are:

Paired Forecasting Method Z-score
f1 -1.582394
f2 -0.999291

BMA -1.204237
EMOS -1.849362

We conclude that the proposed method is robust under the influ-
ence of outliers and generates more accurate forecasts (in particular,
when compared to EMOS).
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