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ABSTRACT

This paper studies the popular Holt-Winters, SARIMA, and Kalman-
Filter prediction methods on industrial time series in the cyber-
security context. The analyzed datasets represent various data
sources from internal networks, telecommunications, firewalls and
email traffic, all with particular characteristics that require the util-
isation of different algorithms and settings. This includes problems
present in training data, being missing, wrong, or containing out-
liers. The obtained results provide an insight into the performance
of the methods on typical industrial datasets, thus, enabling secu-
rity practitioners to choose a “best fit” method for their use cases
and guiding them in choosing the optimal size of training data
and providing recommendations for the best settings of the given
methods.
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1 INTRODUCTION

Cyber-attacks are nowadays one of the most prominent risks for
companies. Criminals have been inventing sophisticated tactics
to penetrate into organizations and steal sensitive data. Various
companies like Yahoo, Sony, Adobe, Equifax, or J.P. Morgan have
been victims of data theft [9], which very often creates serious
reputational and financial damage. Therefore, security teams rely
on working intrusion detection mechanisms to mitigate such risks.
Due to the huge amount of data, the challenge is to detect such
intrusions in (near) real-time.

As a proven method, anomaly detection has the main advantage
as it typically does not require extensive knowledge regarding at-
tacks a priori. There exists a large body of research on anomaly
detection methods [4]. Some are based on statistical prediction
methods, while others rely on machine learning. Even though the
family of machine-learning methods is gaining more and more
attention, prediction methods are still a preferable choice in many
contexts as they are fast (enabling frequent retraining to cope with
the fast pace of service and also attack development) and in most
cases require no expensive hardware. All techniques have in com-
mon the need of processing complex and huge quantities of time
series data.

Valuable sources for anomaly detection are application and sys-
tem logs but also network traffic, which itself consists of time series
from various sources with different characteristics like missing data
points, wrong data, the presence of outliers, and high seasonality.
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Given these preconditions, we experimentally assess three pre-
diction methods, Holt-Winters, Kalman-Filter, and SARIMA on in-
dustrial security datasets. Our goal is to study the quality of the
methods and how well they perform on the given datasets. The
outcome provides an invaluable insight regarding method selec-
tion, the amount of data required for training, and the treatment
of problematic data. To the best of our knowledge, this is the first
experimental study in this context.

The obtained results show that one can achieve a prediction
with an error rate of approximately 10%, dependent of the properly
selected and configured method. The training data should contain
between three to five weeks of historical data when we consider
hourly traffic. Furthermore, it has been shown that the prediction
rate of Holt-Winters can be significantly improved by treating train-
ing data to deal with missing, wrong data, and outliers by replacing
them with seasonal means. Kalman-Filter and SARIMA resist well
with such problems. Following the evaluation of the results, it has
been shown that the Kalman-Filter method is generally a recom-
mended method as it yields a good result in most situations, even
on original datasets with outliers or missing/wrong data.

The remainder of the paper is structured as follows. Section 2
discusses time series data, their problems, and gives an overview
of the three investigated prediction methods. Sections 3, 4, and 5
provide further details about the methods. Section 6 details our
research questions and experiment settings, followed by Section 7
where we report all our findings. Section 8 discusses the implemen-
tation of the method in an industrial tool and their application in
detecting real-world attacks. Finally, Section 9 concludes the paper.

2 BACKGROUND

2.1 Time Series Data in Security Context

A time series is a list data points in time order. Most often it contains
successive values taken with a fixed time interval, e.g, every hour.
In security context, we encounter frequently the use of time series
data to capture the numbers of events of interest or traffic volume
through a network interface over time. Such data gives the analyst
invaluable insights about what has been happening to his networks
or systems. Furthermore, statistical methods and machine learning
models can be carried out on the data to predict the future and to
detect anomalous events.

Forecasting is the basis of anomaly detection. Here, historical
time series data are used to predict or infer what should happen
at a point in time or at the moment. Predicted values are then
compared with what actually happens (i.e., with actual values), and
a significant difference between the two indicates an anomalous
event.



MiLeTS 18, August 2018, London, United Kingdom

A time series dataset, when being used in anomaly detection,
is often divided into two subsets: training (aka fitting) and testing.
The former is used for training a machine learning or statistical
model, while the latter is used either for assessing the model or
detecting anomalous data points within the subset. The training
subset takes the large portion of the dataset in most of the cases as
one would want to learn as much as possible from the given data
at hand. The testing subset, on the contrary, typically contains a
few recent data points of the time series.

In practice, however, one has to face a number of challenges while
using time series data. The first issue links to missing data points. In
other words, there could be gaps in data due to the unavailability
of the system under observation (e.g., because of a maintenance
activity) or due to measurement gaps. The second aspect concerns
wrong data that are incorrect values in a dataset. They can appear
if there were errors made while gathering data. Sometimes datasets
are not allowed to have missing values and those are then set to
obvious wrong values so that they can be easily detected. Third,
outliers in a training dataset are a particular issue. Outliers are
values from a dataset that are too high or too low compared to the
other values. Their appearance is normally caused due to special
events like strikes, cyber-attacks, or natural catastrophes. These
challenges affect the generality property of predictive methods,
leading to undesired prediction. Hence, during the training phase,
one should apply necessary treatments to detect and treat missing
data, wrong data, and outliers in the data used for learning.

If a dataset shows a repeating pattern for constant periods, like
for example every year, every week, or every month, then it is
called seasonal. Such repeating patterns are often observed in real-
world examples. In that case, we can use this knowledge to improve
the prediction. One only has to find out the seasonality, i.e., the
length of the repeating pattern that is equal to the number of data
points of such a period. Normally, the seasonality is very small
(four, seven, 12 if we have quarterly, weekly, monthly repeating
data, respectively). In our case, however, we deal with hourly data
and have to treat high seasonality values that is a challenge with
the SARIMA prediction method.

2.2 Anomaly Detection Methods for Time
Series

Many anomaly detection methods exist today. Some are based
on machine learning and more especially on regression models,
clustering, regression or SVM [4] (Support Vector Machine). In the
context of time series, however, statistical prediction methods have
been receiving more and more attention. On the one hand, it is due
to the fact that they require no prior knowledge about the label
(i.e., normal or anormal) of each data point in the dataset, as it is a
requirement for the majority of machine learning methods (except
the unsupervised ones). Hence, it is cheaper to apply a statistical
prediction method. On the other hand, prediction methods are
generally fast with the positive consequence that frequent or even
online retraining is affordable.

There exists a large family of prediction methods like the naive
methods, moving average methods, ARMA/ARIMA/SARIMA meth-
ods, exponential smoothing methods, Kalman-Filter based meth-
ods, and more advanced methods based on neural network models
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or vector autoregression. The most discussed methods are also
those used for forecasting in general and especially if the datasets
show a seasonal pattern as in our case: the Holt-Winters exponen-
tial smoothing methods [11, 12], the SARIMA method [1, 24], and
methods based on the Kalman-Filter [19].

The development of the three methods started between 1944-
1960 and have been improved over time. The Holt-Winters methods
were developed by Charles HoLT and Peter WINTERS and are used
in a nearly unchanged way since then. Some historical informa-
tion and explanation about exponential smoothing methods can
be found in [11, 12, 16, 17]. The development of the SARIMA (Sea-
sonal Auto-Regressive Integrated Moving Average) method started
by the invention of the AR (Auto Regression) and the MA (Mov-
ing Average) methods. We refer the reader to the following two
books that give mathematical detail about SARIMA [1, 24]. The
Kalman-Filter was invented by Rudolf E. KALMAN [19]. It is mainly
used to forecast or estimate results from noisy data. It has a lot
of applications like for example GPS, satellite navigation devices,
smartphones, or computer games. Its famous use was helping the
navigation of the Apollo mission to the moon.

2.3 Related Work

Predictive analytics on time series have been investigated in various
fields of research [2-4, 7]. It has also been recognized by the industry
for detecting data breaches in cyber security contexts [13].

The Holt-Winters prediction method has been applied to time
series in [15] for anomaly detection on websites. Holt-Winters was
used to forecast the number of pageviews and pageload time. Fore-
cast data are then compared to actual ones for detecting anomalies.
The author also dealt with missing values using the mean of pre-
vious observations. Our work differs significantly in that as we
consider three different methods on many more datasets. We also
study the application in practice.

The ARIMA prediction method, which is a sister method of
SARIMA discussed in the present paper, has been applied in [6, 8, 23]
for anomaly detection. Moayedi et al. used ARIMA on network traf-
fic data in order to isolate anomalies [6]. The data used were simu-
lated data with some artificial attacks that increased the network
traffic at some time intervals. The authors showed that ARIMA was
capable of detecting those attacks. Wang et al. also used ARIMA on
network traffic data obtained from a network of a university cam-
pus [23]. Historical data were used for training in order to forecast
expectation value at the current moment. It is then compared to
actual data in order to detect inconsistencies. The authors claimed
to have dealt with abnormal data in the training data by replacing
them with forecast values so that subsequence detection will be
more accurate. However, the impact of such treatment has not been
investigated. Shirani et al. used ARIMA on incoming the size of
SOAP messages sending to a web service over time to detect anom-
alies that are likely linked to XML DoS or brute-force attacks [8].
The method yielded a high accuracy (97%) and a low false positive
rate (1.5%) on a dataset made available by Amazon!.

Prior to the current work, we have done a preliminary analy-
sis and found that the SARIMA model, a variant of ARIMA, that
considers seasonality in time series outperforms ARIMA in all the
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datasets investigated. In fact, we observe a clear weekly and hourly
pattern of seasonality in traffic data, e.g., having a peak at 8AM and
1PM on working days; weekend days have less traffic than working
days. Therefore, SARIMA has been assessed in our experimental
studies.

Apart from considering SARIMA instead of ARIMA, our work
differs from the related ones on a number of aspects. First, we as-
sess experimentally three different methods, Holt-Winters, Kalman-
Filter, and SARIMA on time series security datasets. Second, we
implement and deploy Holt-Winters and SARIMA into an industrial
platform called Splunk?, which comes with Kalman-Filter, making
them all available to practitioners. Third, we work with a number
of diverse and real-world datasets, not artificial ones. Hence, the
results are likely more generalizable in practice.

3 HOLT-WINTERS

Several Holt-Winters exponential smoothing methods exist. It de-
pends on the shape of the data to decide which one to use. Our
data is regular, i.e., all the seasons have the same shape and similar
values. So the mean values of the seasons are rather constant. This
means that our data is not really additive or multiplicative, but kind
of both and in that case the multiplicative forecasting method works
the best. In a preliminary work we compared different Holt-Winters
exponential smoothing methods on our data and came also to the
result that the multiplicative method works the best. Hence, we will
only consider the multiplicative Holt-Winters method, more pre-
cisely a damped version of the multiplicative method. The strength
of this method is that it is straightforward and easy to understand
and to use. Multiplicative triple-exponential-smoothing methods
divide the original data into three parts: the level, the trend, and
the seasonal component. When they are multiplied together one
gets back the original values. We show the main formulas proposed
by Hyndman in [5] and explain the main variables.

Resnle = [Le + (@ + % + ...+ §"MBIS mns .

x
L= ag——+ (1= a)le1 +¢Bry),
t—-m
By = (Lt —Ly—1) + (1 = B)pBs—1,
Xt
St =y———+ (1 —y)St—m,
t th—l +¢Bt—l ( Y) t—-m

where

e h € N denotes the time step to be forecasted.

® %;.p|; denotes the estimated (forecast) values. The index
indicates the estimation of x; at time i = t + h knowing the
values of x; fori =0, ..., t.

e L; is called the local mean level or smoothed value of the
seasonally adjusted time series at time ¢. L; is the weighted
average of the current observation x; without seasonality
and the estimate of the previous observation without sea-
sonality. As the seasonality is taken out of the data, greater
variations are taken out and so we get back a more smoothed
version of our initial data.

e B; is called the trend or slope of the seasonally adjusted time
series at time t. It is the weighted average of the difference

Zhttps://www.splunk.com
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between the current smoothed value and the last one and the
previous slope. As the smoothed values contained already
no seasonality also the B; contain no seasonal pattern.

o S; is called the seasonal component of the time series at time ¢.
It is the weighted average of the current seasonal component
and the seasonal component of the value at the previous
season. It represents the seasonal effect on the time series.

e a, fB,y,¢ € [0, 1] are called the smoothing parameters.
a, B, y tell us how much importance is given in the more
recent past and how much importance is given in the further
past. The role of ¢ is to damp the values to avoid too high
forecasts.

The most important part of these methods is to estimate good
smoothing parameters because they have a high impact on the
result. A very often used method is to set the initial values at
(0.3, 0.3, 0.3, 0.3) and use a hill-climbing method to minimize the
Sum of Squared Errors of the data. In this work, we use the BFGS [10,
20] hill-climbing algorithm with the starting values (0.0, 1.0, 0.0, 1.0).
We found out that this combination provides the best results for
our data with @ ~ 0, § ~ 1, y € [0.5, 0.8], and ¢ near 1 or near
0. This means that the recent past values are nearly ignored for
the local mean level (@ ~ 0), while only the latest values are taken
into account for the trend (f ~ 1). Finally, the seasonal component
considers the whole value range with an emphasis on recent past
values (y € [0.5, 0.8]).

4 KALMAN-FILTER

Kalman-Filter is a forecasting method that has been devised to deal
with noise in training data [21]. Figure 1 shows an iteration of the

formulas.
mn surement Update (“Correct”™)

(1) Compute the Kalman gain
K, = P;HT(HPHT + R)™

Time Update (“Predict™)

(1) Project the state ahead
i = Al +Bu,
k k-1 k-1 (2) Update estimate with measurement 7.

(2) Project the error covaniance ahead

P, = AP, AT+

iy = A+ Kz, - Hip)

(3) Update the error covariance

u Pk : [:I_K&-H)P;-

Imtial estimates for &y _, and P _;
Figure 1: General iteration of the Kalman-Filter method.
Source: [21].

For each point in the training set, the Kalman-Filter method
makes a forecast X, and corrects this value using the actual value
Xy. This correction is done by calculating the so-called Kalman
gain Kj. which indicates the reliability of the forecasted value and
its required correction. With these iterations, the method adapts
automatically the parameters to improve the forecast so that the
difference between the forecasted and the actual value gets smaller
and smaller. The strength of this method is that only a few iterations
are required. In our case, most of the parameters represent real
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values or vectors, but in multidimensional cases they represent
matrices. For more details about these equations, we refer the reader
to [14, 19, 21].

Nowadays more than one version of Kalman-Filter exist, but
they are all based on the original formulas and are still close to
them. The formulas in Figure 1 can even be applied for higher di-
mensional examples. In a preliminary phase we tested different
versions of Kalman-Filter, implemented in Splunk?, without having
the possibility to take a look at the code. Hence, we have no detailed
knowledge about whether there is any customization. Neverthe-
less, we did try different options provided by Splunk and used one
combination (X11 with LLPs) that delivers the best result on our
data in our evaluation.

5 SARIMA

As already mentioned previously, the SARIMA method is an im-
proved version of a mix between the AR and the MA method. The
AR method describes values as a linear combination of the past
values whereas the MA method describes values as a linear com-
bination of its past errors. ARMA combines both and ARIMA and
SARIMA are the improvements for different shapes of data. The
main formulas are proposed by Wei in [24]. The SARIMA(p, d, q)(P,
D, Q, s) method writes for p, d, ¢, P, D, Q, s € R

#(B)(B*)[(1 - B)Y (1 - B)P %] = 0(B)O(B e,
where

e p, q, P, Q € N indicate how many periods we go back in
time. Normally p,q, P, Q < 3.

o d and D are the degree of differencing and the degree of sea-
sonal differencing respectively and normally d, D < 1. They
are used to manipulate the data so that it has a good shape
to use the SARIMA method.

o s is the seasonal factor and indicates the length of a season
in the data.

e ¢; is the error at time ¢.

e B" is the backshift operator, i.e., a function shifting the data
back n periods in time: B"x; = x;—p.

o ¢(B) and 6(B) are the regular autoregressive and moving av-
erage factors depending on p and g:

o §(B)=1—-¢1B—...—$pBP, with éy, ..., ¢ €R,

e 0(B)=1-61B—...-0gB, with 61, ..., 05 € R.

e ®(B%) and O(B®) are the seasonal autoregressive and moving
average factors depending on P and Q:

e ®(B)=1-®B—...—dpBY with®q, ..., ®p € R,

e ©(B)=1-0;B—...-0pB?, with©y, ..., 00 € R.

To use the SARIMA method, one first has to determine the pa-
rameters p, d, g, P, D, Q, and s. This takes some time and analysis,
so we refer the reader to [1] and [24] for more details about how to
find the parameters and also about the SARIMA method in general.

Normally the value of s is typically clear by analyzing the time
series representation (e.g., data plot over time). However, no perfect
method exists so far for the other six parameters. d and D are
estimated based on unit root test [5]. Finally, one can adopt the
Hyndman-Khandakar algorithm [5] to optimize p, ¢, P, Q. Their

Shttps://docs.splunk.com/Documentation/Splunk/7.1.0/SearchReference/Predict
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initial values can be obtained thanks to the autocorrelation function
(ACF) and partial autocorrelation (PACF) plots, then one need to
vary them (usually with a step of 1 within the range from 0 to 3)
to reach the lowest error rate. Using this method the following
combination SARIMA(1, 1, 1)(1, 1, 1, s) gives the lowest error rate
in our evaluation.

6 EXPERIMENT SETUP

6.1 Research Questions

The goal of this study is to experimentally investigate the perfor-
mance of the three prediction methods, Holt-Winters, Kalman-Filter,
and SARIMA. Specifically, we seek to answer the following research
questions concerning the prediction capability of the methods and
the impact of the quality and quantity of training data:

e RQ1: How effective are the methods in prediction?

¢ RQ2: How does the size of training data (aka the quantity
of training data) impact the methods?

e RQ3: What is the influence of wrong, missing, or outliers in
training data to the performance of the methods?

6.2 Setting

Table 1 summarizes the four time series datasets used in our exper-
iments. These come from different IT and telecommunication areas
of an incumbent ISP and are relevant security data, required for
visibility and incident detection. The first dataset, DNS, pertains to
DNS queries that translate hostnames to IP addresses. The second
one, Firewall, contains data of network security events. The third
one, Email, links to the number of email sent and received through
our email gateway. Finally, Diameter contains mobile phone signal-
ing events from our mobile network. Note that in the course of this
study, only quantitative data, i.e., number of events, has been used.
Hence, the data sets don’t contain personal data.

Table 1: The available datasets used in our experiments.

Dataset | Timespan | Description

DNS 10 weeks DNS requests

Firewall | 13 weeks Network traffic

Email 10 weeks Emails exchanged through
Diameter | 13 weeks Call signaling in a mobile network

All of them share the same characteristics as detailed below:

o The datasets cover periods between 80 and 100 days with
hourly counts, i.e., the value at 1AM is the count of all the
events that happened between 0-1AM.

o All the datasets show a seasonality of one week, i.e., of 24x7 =
168 points.

e Initial visualization points to obvious daily up and down:
high values during the daily hours and low values during
the night. The weekdays and the weekends show the same
pattern respectively.

o The weekdays have a higher overall mean than the week-
ends.

Anomalies detected from such datasets could link to various
cyber-attacks or frauds. Anomalies on DNS might indicate unusual
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DNS traffic related to malwares trying to hide themselves (e.g,
Domain Generation Algorithms (DGA)) or a degradation of DNS
servers. Anomalies detected in Firewall indicate unusual traffic
in network that might link to data exfiltration, malicious network
scanning. Anomalies detected in Email pertain to email threats such
as phishing campaigns or spamming. Last but not least, anomalies
in Diameter might be related to mobile network threats such as the
SS7 attack or call frauds.

We will use the three forecasting methods, Holt-Winters, SARIMA,
and Kalman-Filter exactly in the way as described above. We re-
call the used parameters in Table 2. For the Diameter dataset we
do not use the multiplicative Holt-Winters method as it contains
many missing values. We therefore make an exception and use the
additive Holt-Winters method.

Table 2: Used forecasting methods with their parameters.

Holt-Winters | « ~0, f ~ 1, y € [0.5, 0.8], ¢ near 1 or near 0
Kalman-Filter | The best option of Splunk
SARIMA . dq.P.D,O)=(1 11111

To measure the performance of the methods in terms of time, all
experiments were carried out on a dedicated server having eight
cores CPU 2.8GHz, 16Gb RAM.

6.3 Error Measures

To evaluate the prediction capability we fix the length of the testing
dataset to one week and change the size of the training data of
each dataset. We then evaluate the prediction capability of the
three methods using two different error measures: mean absolute
error (MAE) and the mean absolute percentage error (MAPE). Their
formulas can be found in Table 3.

The MAE sums up the errors for each value in the testing dataset
and then divides by the number of points to calculate the average
error. So obviously the MAE is a scale-dependent error measure
using the same scale as the dataset. It can only compare time series
which are on the same scale and can be used to compare the results
of different prediction methods on the same dataset.

The MAPE is a normalization of the MAE and describes the error
in percentage. It is therefore scale-independent, hence can be used
to compare the results of the same or different prediction methods
on different datasets.

Table 3: Formulas of the error measures.

)

MAE mean(|x; — X¢])
MAPE

Xp=%y
mean (|100 T

7 RESULTS AND DISCUSSION

In this section, we report the experimental results comparing how
the three methods, Holt-Winters, Kalman-Filter, and SARIMA per-
form on the four datasets with respect to the error measures (MAE
and MAPE). Recall that on each dataset, we consider the data of the
last week for testing, i.e., for measuring the error rates. The data
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of the other weeks are used for training with different controlled
sizes. For DNS and Email, we consider four different training sizes
of one, three, five, and ten weeks. For the others, we consider one
additional size of 13 weeks as they have more data.

The four original datasets were made of hourly values over up to
13 weeks with a repeating pattern every week. So our seasonality
was 24 * 7 = 168. This is a very high value as it is normally 4, 7, or
12. We only found one work by Hyndman et al. [18] talking about
this problem using the ARIMA method. The calculation with the
SARIMA method took several hours, which questions its applicabil-
ity. Therefore, we only used the Holt-Winters and the Kalman-Filter
on the original datasets (SARIMA is applicable when we reduce the
seasonality, which will be discussed shortly).

Table 4 shows the results for the different sizes of the training
sets. During the calculations we observed that both methods need
at least one season as training dataset. They run rather fast as both
need just a few seconds to finish the complete process from training
to prediction. We also see that Kalman-Filter gives in all cases better
results than the Holt-Winters method. It is also worth mentioning
that Holt-Winters and Kalman-Filter seem to have no problem with
the high seasonality. Considering Holt-Winters, we can see that the
training has an overall influence on the performance of the method:
it yields the worst error rates when the size is equal to one week
and the best one the size is three or five weeks. Also, the addictive
variant of Holt-Winters performs worse than its multiplicative
one. On the contrary, the results of Kalman-Filter on the different
training size exhibit no clear pattern. For each dataset, the results
are very close, independently of the length of the training set.

Since SARIMA cannot cope with the high seasonality within an
acceptable execution time, we have pre-processed the datasets to
change the interval from 1h to 4h by taking the sum of every four
consecutive hours. As a result, the seasonality factor is reduced to
42 and we have only one-fourth of the datapoints. Now the compu-
tation of the SARIMA method took between 20 and 70 seconds. For
the Holt-Winters and the Kalman-Filter method, we recognized no
greater change in the speed. Table 5 shows the results for different
sizes of the training sets. We observe also that the SARIMA method
is better than Holt-Winters and Kalman-Filter in two out of four
datasets, Kalman-Filter yields error rates that are quite close to
those of SARIMA. And finally, Holt-Winters performs the worst
in all but one case (Firewall), in which all three deliver a compara-
ble result. Given the difference in execution time and their result,
Kalman-Filter is once again a preferable choice. SARIMA delivered
a completely wrong prediction in the case of five weeks Email. We
investigated this issue and will discuss the finding shortly.

Considering all results from the tables 4 and 5 we can answer

RQ;:

Overall Kalman-Filter yields the most acceptable results in
most cases with an error rate of approximately 10% within a
short time of a few seconds.

Looking at the different length of the training datasets, we can
conclude that we get generally the best results if the length is in
between three to five weeks (note that SARIMA might require at
least four weeks). Shorter time periods do not provide enough his-
torical data to make a meaningful prediction. If the training period
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Table 4: Results for interval length equal to 1h. One needs at
least 1 week as training set to use the Holt-Winters and the
Kalman-Filter method. Size(w) stands for the training size
in weeks.

Dataset | Size(w) | Method Time(s) | MAE | MAPE(%)
DNS 10 | HW 2 12,348 14.13
5 | HW 2 | 11,426 12.95

3 | HW 1 13,493 17.28

1| HW 1 23,193 31.35

DNS 10 | KF 1 10,315 12.40
5 | KF 1 12,519 15.38

3 | KF 1 10,402 11.59

1 | KF 1 9,819 10.77

Diameter 13 | HW (addi.) 2 | 58,487 64.17
10 | HW (addi.) 2| 68,788 78.08

5 | HW (addi) 1| 42,087 50.76

3 | HW (addi.) 1 46,934 56.60

1 | HW (addi.) 1| 60,453 64.27

Diameter 13 | KF 1 10,961 12.15
10 | KF 1 14,346 14.48

5 | KF 1 9,070 10.63

3 | KF 1 12,152 12.60

1| KF 1 12,513 12.98

Firewall 13 | HW 6 13,576 11.96
10 | HW 2 13,567 12.09

5 | HW 2 13,138 12.78

3 | HW 2 8,823 8.97

1| HW 1 21,249 20.39

Firewall 13 | KF 1 15,676 13.45
10 | KF 1 15,640 13.40

5 | KF 1 15,029 12.46

3 | KF 1| 13,966 11.75

1| KF 1 15,490 13.13

Email 10 | HW 4 861 27.75
5 | HW 2 1,008 34.30

3 | HW 1 1,079 33.19

1| HW 1 1,345 39.79

Email 10 | KF 1 794 22.65
5 | KF 1 736 20.57

3 | KF 1 780 21.90

1| KF 1 808 21.21

is bigger we have too many historical data and so the prediction
will be less reactive to recent changes.
To answer RQj3:

Different training sizes yield different results, and the recom-
mended size is in between three to five weeks for hourly data.

We studied the influence of wrong, missing data, and the pres-
ence of outliers in training data to the performance of the prediction
methods. We propose to replace such data points with a correspond-
ing seasonal mean. For instance, a missing data on Thu at 2PM is
filled up with the average of other data points available on the
same week day and time from other weeks. We used the Boxplot
method [22] to detect wrong data and outliers in training data.

Figures 2 and 3 show the MAPE error of all the three methods on
our Diameter dataset, without and with the treatment of training
data. We pick Diameter as it has plenty missing data due to a
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Table 5: Results for interval length equal to 4h. SARIMA

reported an error when running with one and three-weeks
training sets. Size(w) stands for the training size in weeks.

Dataset | Size(w) | Method Time(s) MAE | MAPE(%)
DNS 10 | HW 2 45,479 12.42
5 | HW 1 39.873 10.50

3 | HW 1 40,063 11.64

1| HW 1| 112,580 35.20

DNS 10 | KF 1 36,662 10.15
5 | KF 1 47,642 13.88

KF 1 37,193 9.73

KF 1 32,591 8.34

DNS 10 | SARIMA 28 34,075 9.17
5 | SARIMA 68 | 31,962 8.19

Diameter 13 | HW (addi.) 1 63,702 18.07
10 | HW (addi.) 1| 69,734 20.84

5 | HW (addi.) 1| 56,146 16.74

HW (addi.) 1| 109,999 31.51

HW (addi.) 1| 119,429 31.23

Diameter 13 | KF 1 41,654 11.76
10 | KF 1 53,246 14.19

KF 1 34,689 10.77

KF 1 47,680 12.69

1| KF 1 49,438 13.36

Diameter 13 | SARIMA 33 40,559 11.67
10 | SARIMA 25 41,194 12.28

5 | SARIMA 68 47,349 12.76

Firewall 13 | HW 1 52,301 11.96
10 | HW 1 52,214 11.97

5 | HW 1 48,436 11.71

HwW 1 31,230 8.36

1 | HW 1| 188,178 41.70

Firewall 13 | KF 1 62,936 14.06
10 | KF 1 63,582 14.14

5 | KF 1 58,138 12.83

KF 1 54,242 12.14

KF 1 58,021 12.98

Firewall 13 | SARIMA 28 48,073 10.93
10 | SARIMA 28 | 48,070 10.93

5 | SARIMA 5 51,705 12.05

Email 10 | HW 2 3,106 25.30
5 | HW 1 3,583 29.74

HW 1 3,703 30.40

HW 1 4,767 31.96

Email 10 | KF 1 2,967 20.97
5 | KF 1 2,734 18.63

KF 1 2,928 20.47

KF 1 3,093 19.86

Email 10 | SARIMA 22 2,268 15.09
5 | SARIMA 60 | 257,119 2,099.73

maintenance during data collection. Looking at the MAPE barplots
we observe that the treating of the training data has an influence on
the result. It has the biggest influence on the Holt-Winters method.
As a result, it is more vulnerable to wrong data than the other
two methods. The SARIMA and the Kalman-Filter methods show a
very slight amelioration. We repeated the same evaluation on other
datasets that contain fewer missing or outliers. We also observed
the similar effect. Thus we can provide a clear answer to RQs3:
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Figure 2: Barplot showing the MAPE of the Diameter dataset
with 4 h interval for different lengths of the training data.
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Figure 3: Barplot showing the MAPE of the treated Diameter
dataset with 4 h interval for different lengths of the training
data.

Wrong, missing values or outliers in training data do have a
noticeable impact on Holt-Winters only. Replacing them with
seasonal means helps improve prediction outcomes. Kalman-
Filter and SARIMA are immune to those problems to a large
extent.

The results above show a very strange and bad result when using
the SARIMA method on the Email dataset with a training set size of
five weeks. For all the other lengths of training sets, we get valuable
results using the SARIMA(1,1,1)(1,1,1,42) configuration. There is no
obvious reason why in that specific case we get a totally bad result.
It seems that some points in this dataset with that length disturb
the method.

Following, we investigate the results of different parameter con-
figurations to examine if the results outperform the previous results.
They are summarized in Table 6.

We see that nearly all the configurations give a good result better
than the Holt-Winters method (MAPE = 29.74 %). The configura-
tion SARIMA(1,1,1)(1,0,1,42) is also better than the Kalman-Filter
method (MAPE = 18.63 %). However, we can also observe that the
parameters of SARIMA have a significant impact on its results.
Wrongly chosen parameters can lead to extreme deviating predic-
tions, getting MAPEs of 2,099.73 and 10, 000.27% for instance. We
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Table 6: Different parameter configurations for SARIMA for
the 4 h internal Email log dataset with a training size length
of five weeks

SARIMA Parameters | MAPE (%)
(1,1,1)(1,1,1,42) 2,099.73
(0,1,1)(1,1,1,42) 23.14
(1,0,1)(1,1,1,42) 28.44
(1,1,0)(1,1,1,42) 23.17
(1,1,1)(0,1,1,42) 10,000.27
(1,1,1)(1,0,1,42) 17.44
(1,1,1)(1,1,0,42) 22.62

can conclude that SARIMA is sensitive to its configurations and
some might render the method completely useless.

8 IMPLEMENTATION AND APPLICATION

The present research work has been carried out in an industrial
context with real-world data. Apart from assessing the considered
methods scientifically, we also aim at their utilization in practice.
Therefore, we have developed two add-ons for Splunk, one of the
most powerful industrial tools for security and business analytics
that can handle big data and enable real-time analyses. The Kalman-
Filter method has been built into Splunk by its vendor. Our add-ons
implement the other two methods, Holt-Winters and SARIMA. They
are currently available upon request and we plan to make them
open-source in the near future.

Figure 4 shows a visual comparison of the prediction of the
methods versus actual data of a dataset during its last week. It is
clearly visible that the predicted data are close to actual ones across
all methods.

Moreover, we have used these methods to successfully detect
real-world security incidents. For instance, we have been able to
detect many call frauds in which a malicious attacker generated
a massive number of dropped calls to trick recipients to call back
through a premium number. The recipients have to pay a high fee
for such a return call. Also, we identified an anomaly in DNS traffic
due to a misconfiguration that led to network degradation. Finally,
we discovered an email spam campaign that misused IoT devices
that generated a huge amount of emails.

9 CONCLUSION

Knowing about the importance of real-time and near-real-time inci-
dent detection (and mitigation), statistical-based anomaly detection
methods play a crucial role, as they are fast, do not require extensive
computing power, and more importantly, not require prior knowl-
edge of attacks. As they take just a few seconds for a full cycle from
training to detection, we can retrain our models frequently to cope
with the fast-changing pace of our services so as to cope with the
ever-evolving attack landscape.

In this paper, we compared three prediction methods, Holt-
Winters, SARIMA, and Kalman-Filter, that are popular for time
series data. Our goal was to study the characteristics of the meth-
ods and how they perform on the industrial security datasets. We
evaluated the methods with different training sizes to find out the
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Figure 4: A screenshot of the implementation of the prediction methods in Splunk. The figure shows a visual comparison of

the methods’ prediction versus actual data.

effect of training size and the recommended size that should be
considered in practice. Furthermore, we also treated problems in
training data, including missing data points, wrong data, the pres-
ence of outliers, and high seasonality.

The obtained results indicate that the Holt-Winters and the
Kalman-Filter methods are fast even for high seasonality, SARIMA
is much slower in comparison with the others. Also, SARIMA re-
quires time and expertise to find good parameters. In terms of
prediction, SARIMA is slightly better than Kalman-Filter, but both
of them are much better than Holt-Winters. Moreover, Holt-Winters
is prone to wrong, missing data, and outliers, while Kalman-Filter
and SARIMA resist well to them. Overall, Kalman-Filter is the rec-
ommended method.

The second big question was whether the length of the training
data has an influence on the prediction and if yes to find the optimal
length. We can conclude that one gets the best results when the
length of the training data is in between three to five weeks of
hourly data. Smaller or bigger training data might lead to undesired
results. Note that this finding applies to the data used in our exper-
iments and probably for datasets that share similar characteristics
(see Section 6.2).

As an additional contribution of the work, we have implemented
Holt-Winters and SARIMA and made them available as add-ons for
Splunk, an industry tool for big data analytics. We applied Kalman-
Filter in real-world use cases and have detected various security
incidents, e.g, email spamming or call frauds.
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