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ABSTRACT
Reliable and accurate time-series modeling is critical in many fields
including energy, finance, and manufacturing. Many time-series
tasks, however, suffer from a limited amount of clean training
data resulting in poor forecasting, classification or clustering per-
formance. Recently, convolutional neural networks (CNNs) have
shown outstanding image classification performance even on tasks
with small-scale training sets. The performance can be attributed
to transfer learning through ability of CNNs to learn rich mid-level
image representations. For time-series, however, no prior work
exists on general transfer learning. In this paper, motivated by re-
cent success of transfer learning in image-related tasks, we show
its applicability for time-series and define a new architecture and
a new loss function for time-series transfer learning that is able
to outperform the baseline methods typically used in practice for
transfer learning.

We demonstrate the effectiveness of our approach in many di-
verse domains.
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1 INTRODUCTION
Accurate time-series forecasting is critical for load forecasting, fi-
nancial market analysis, anomaly detection, optimal resource allo-
cation, budget planning, and other related tasks. While time-series
forecasting has been investigated for a long time, the problem is
still challenging, especially in applications with limited history
(e.g., holidays, sporting events) where practitioners are forced to
use adhoc machine learning approaches achieving poor forecasting
performance [26].

Recently, time-series modeling based on a particular recurrent
neural network, the Long Short Term Memory (LSTM) model [10],
has gained popularity due to its end-to-end modeling, ease of in-
corporating exogenous variables, and automatic feature extraction
abilities [1]. Inspired by the success of deep convolutional neural
network (CNN), [9] use stacked LSTM cells with different weight
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matrices in different layers for text prediction; [8] use deep LSTM
cells for speech recognition; [6] use deep LSTM and CNN for video
recognition; [16] show that an LSTM forecasting model is able to
outperform classical time series methods in cases with long, inter-
dependent time series. The superior performance of deep LSTM
structure on different tasks empirically prove its capability of mod-
eling complex nonlinear feature interactions.

However, similar to training a deep CNN model, training a deep
LSTM network needs updating the weight matrices for each LSTM
cell, which requires a large amount of data across numerous di-
mensions. The data requirement hinders the application of deep
LSTM model in time series forecasting. For example, recent results
on time-series forecasting using LSTM only apply a single layer of
LSTM [3].

Transfer learning [20] can address this problem. In transfer learn-
ing, we first train a base network on a base dataset and task, and
then we repurpose the learned features, or transfer them, to a sec-
ond target network to be trained on a target dataset and task. This
process will tend to work if the features are general, meaning suit-
able to both base and target tasks, instead of specific to the base
task. When the target dataset is significantly smaller than the base
dataset, transfer learning can be a powerful tool to enable training
a large target network without overfitting.

[2] shows preliminary results of using transfer learning on im-
ages.While the deep CNNmodels also suffer from requiringmassive
training data, [7, 11, 13, 19, 22–24, 28, 29] explore transfer learning
on images, language and video. In image-based transfer learning
[2], deep neural networks exhibit a curious phenomenon: when
trained on images, they all tend to learn first-layer features that
resemble either Gabor filters or color blobs [2]. The appearance of
these filters is so common that obtaining anything else on a natural
image dataset causes suspicion of poorly chosen hyperparameters
or a software bug. This phenomenon occurs not only for different
datasets, but even with very different training objectives, including
supervised image classification [14], and unsupervised learning of
sparse representations [17]. [29] quantitatively explore transferabil-
ity of different layers for the image classification task. The authors
discover that because finding the Gabor filters on the first layer
seems to occur regardless of the exact cost function and natural
image dataset, these first-layer features are called general. On the
other hand, the features computed by the last layer of a trained
network must depend greatly on the chosen dataset and task. For
example, in a network with an N -dimensional softmax output layer
that has been successfully trained toward a supervised classifica-
tion objective, each output unit will be specific to a particular class.
[29] thus calls the last-layer features specific. [7] applied transfer
learning on CNNmodels which serves as an input of following RNN
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model for action recognition. Transfer learning has been introduced
to language model works. For example, [22] discusses using varia-
tional RNNs to capture underlying temporal latent dependencies.
[23] use pre-trained weights to initialize seq2seq language models.
[24] used an RNN to generate data as the input of another RNN for
language models. [28] proposed to use transfer learning by freezing
several layers of RNNs for language modeling.

Motivated by these findings, we investigate if transfer learn-
ing applies to time series forecasting. Until now, the success of
model generalization in deep CNN models for image-related tasks
and in RNN models for language modeling still does not happen
in deep LSTM models for time series-related tasks. Though [27]
proposed to use transfer learning for sequence tagging problems,
the sequence tagging problem can be explicitly decomposed into
different sub-problems and the transfer learning is also explicitly
divided. Transfer learning has also been recently used in language
translation where an auto-encoder architecture is typically used
[18]. Previous work has shown that an auto-encoder is useful in
time-series for feature extraction [16], but not in time-series fore-
casting.

In this paper, we explore if there are equivalent general and spe-
cific features for time-series forecasting using a novel deep learning
architecture, based on LSTM, with a new loss. We are interested
in this, to the extent that features within a deep LSTM network
are general, we will be able to use them for transfer learning to do
more accurate forecasting on short time-series.

To the best of our knowledge, our work makes the first attempt
to present the evidence of transfer learning for time-series in neural
nets and to quantify its applicability to real-world applications. Our
contributions are four-fold:

(1) We firstly demonstrate transfer learning for time-series fore-
casting.

(2) We define a new loss function and a new model architecture
that improves the standard transfer learning technique and
show its effectiveness for time-series.

(3) We demonstrate use-cases and impacts of time-series trans-
fer learning, including:

(a) forecasting with limited history,
(b) computational resource saving,
(c) cross-domain learning capability.

(4) We publish an online tool that democratizes time-series fore-
casting through a public transfer learning model motivated
by ImageNet [14].

2 TRANSFER LEARNING IN TIME-SERIES
Transfer learning involves the concepts of a task and of a domain.
A domain D consists of a marginal probability distribution P(X )
over the feature space X = {x1, ...,xn }. Thus, given a domain
D = {X, P(X)}, a task T is composed of a label space Y and a
conditional probability distribution P(Y |X ) that is usually learned
from training examples consisting of pairs xi ∈ X and yi ∈ Y.
Given a source domain DS and a source task TS as well as a target
domainDT and a target task TT , transfer learning aims to learn the
target conditional probability distribution P(YT |XT ) in DT from
the information learned from DS and TT . In this paper we apply
transfer learning to a time-series domain and apply it to cases

where XS , XT and P(YS |XS ) , P(YT |XT ) (e.g., target domains
with limited training data and different time-series classes).

Time-series data can be decomposed into the summation of a
(usually monotonic) trend component, a (periodic) seasonal com-
ponent, a holiday component, a stationary (stochastic) component,
and a (usually i.i.d.) error component. Most of the time-series fore-
casting models assume explicit models with hyper-parameters of
the trend, seasonality, and the stochastic process:

y(t) = д(t ;α ti ) + s(t ;α
s
i ) + h(t ;α

h
i ) + c(t ;α

c
i ) + ϵ(t ;α

ϵ
i ),

where д(·), s(·), h(·), c(·), ϵ(·) represent the trend, seasonal, holiday,
stationary, and error component, respectively. Then, these models
usually use maximum likelihood estimation to determine the hyper-
parameters α . However, the explicit model formulation of each
component is still far from empirical understanding. For example,
[25] propose to use only a piecewise-linear function and a logistic
growth model for trending modeling, and a Fourier series with
trigonometric function as basis for seasonality modeling. Moreover,
all hyper-parameters need to be optimized for specific data sets.

Instead of defining the explicit model components, the LSTM
model only consists of 5 different nonlinear components. Initially,
the LSTM cell is designed to repeat infinitely, with a single set
of hyperparameters, including four rectangular weight matrices
Wf ,Wh ,Wu ,Wo , acting on input vector x , serving for computing
forget gate, candidate state, update gate, and output gate, respec-
tively. Four square weight matrices Rf ,Rh ,Ru ,Ro , acting on lagged
output vector yt−1, serving for the same computation procedures.
By stacking LSTM cells to construct a deep LSTM model, we gain
additional freedom by enabling different weight matrices in differ-
ent LSTM layers. We hypothesize that the feature layers of LSTM
model is a generalization of the trend, seasonality, and holiday
representation, in analogy to the explicit models in traditional time-
series modeling tasks. While the model representation itself rather
a general feature for all time-series data, we anticipate that the
representation learned from one dataset can be used for another
dataset. Then, the lower levels of the LSTM model serves the role
in analogy to the hyper-parameter optimization which varies for
different datasets. The illustration of the generalization is shown in
Fig. 1.

After model training, a set of feature layers is typically frozen
in order to avoid changing the learned weights. In this paper, we
explicitly decompose the model into two types of layers: feature
layers and predictive layers. After training, we typically freeze the
feature layer weights to reuse them.

2.1 Model Loss & Architecture
The standard time-series modeling approach consists of a set of
LSTM layers and the MSE cost function on the output layer. Our
loss, however, consists of a combination of a regression loss and
a reconstruction loss. The regression loss is a simple MSE loss
while the reconstruction loss is defined asEqϕ (z |x ) [logpθ (x |z)] and
represents the likelihood that the input data would be reconstructed
by the model. The motivation for this loss is to explicitly compute
the modeling loss and forecasting loss separately. Figure 2 shows
our architecture. Note that the first set of layers are fully connected
and we pass the original input as well as the output from our
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Figure 1: Transfer learning visualization

reconstruction layers to the prediction layers which are LSTM-
based. Specifically, our layer structure is as follows:

(1) L1 - Fully connected layers to extract time-series features
(2) L2 - Bottleneck layer where the reconstruction loss is com-

puted
(3) L3 - A set of LSTM layers that as input take the output of

a fully connected layer and the original input to perform
prediction and compute the forecasting loss.

Figure 2: Transfer learning visualization. The first loss func-
tion represents the reconstruction loss. The Yi ’s are original
time series. The Ỹi ’s are reconstructed time series, which is
the input of the following forecasting module. The second
loss function represents the forecasting loss. The Yi ’s are
original time series. The Ŷi ’s are forecasted time series.

By combining the reconstruction with the regression loss we are
able to separate the two functionalities, modeling and forecasting,
into individual components and optimize them jointly. Note that

while we observed an average of 20% improvement in MSE reduc-
tion compared to the standard LSTM model with a single MSE loss
at the output layer, this paper focuses on transfer learning ability
of our model and leaves the comparison against standard LSTM
methods with various hyper-parameters for the longer version of
the paper.

3 EXPERIMENTAL SETUP
Dataset: The dataset used for demonstrating transfer learning con-
tains 116,000 anonymous residential scale electricity loads at hourly
granularity from Pacific Gas and Electric Company (PG&E dataset).
The data is from 08/01/2011 to 7/31/2012. The 116,000 time series are
from 13 different climate zones and are with large diversity [15]. Be-
sides the anonymous PG&E dataset, we also use a publicly available
M3 dataset for validation. All time series are logarithm transformed
and min-max scaled to [0, 1] interval.

Deep LSTM Model: The deep LSTM model consists of 3 fully
connected layers and 6 LSTM cells. Each fully connected layer and
an LSTM layer has a 128-dimensional state vector. For a given
timestamp t (hour), the input vector x consists of 60-hour historical
electricity load: x = [lt , · · · , lt−59], and the output vectory consists
of 60-hour electricity load from time t : y = [lt+1, · · · , lt+60]. We
train the network using 60 hours for the forecast horizon and 60
hours for the lookback.

Data Separation: The PG&E dataset is separated into four parts
for experiments. In particular, we randomly split the dataset into
two subgroups, A and B, with same size. Then, we divide each
subgroup into first six-month data and second six-month data. The
four sub-groups of data is labeled with A1, A2, B1, and B2, shown
in Table 1.

In the following experiments, the whole subset A1 is used to
train the base deep LSTM model, called Base. Then, for any time
series bi in subset B, we use bi1 ∈ B1 for training, and bi2 ∈ B2 for
testing. The transfer learning is implemented as: given n as the
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A (58k) B (58k)
08/01/2011 - 01/31/2012 A1 B1
02/01/2012 - 07/31/2012 A2 B2

Table 1: Data separation

transferred layer from Base, we freeze the first n layers of the Base
model, and use bi1 to train the other 6 − n layers. If n = 6, then
we only use the specific data bi1 to train the last fully connected
layer. We call the transfer learning model as AnB for a given n. We
can also initialize the deep LSTM model with randomly chosen
hyperparameters, and only use bi1 to train the deep LSTM model.
We call the model Single. All the three models are tested using
bi2 ∈ B2. The training data and test data setup is shown in Table 2.
The symmetric mean absolute percentage error (SMAPE) is used
for performance evaluation.

Base AnB Single

Training data A1 A1 + bi1 bi1
# frozen layers - n -

Test data bi2 bi2 bi2
Table 2: Training and test data for i-th customer for different
deep LSTM models

4 RESULTS AND DISCUSSION
In this section, we systematically analyze the feature transferability
and their stability among diverse time series. We also show that
by using transfer learning, we can use deep LSTM model for ac-
curate time-series forecasting with limited history at a very small
computational cost.

4.1 Time-Series Feature Transferability
First, we compare the performance of the AnBmodel and the Single
model on all customers from subgroup B, to show the improvements
using transfer learning.We also use the classical forecastingmethod
HoltWinters as a baseline. In this experiment, we fix the number
of freeze layer at 3. The result is shown in 3a. When the training
size is very small, transfer learning provides substantial perfor-
mance improvement of the A3B model over the Single model. In
particular, the SMAPE drops from around 200% to less than 75%.
While increasing the training size helps both two model get smaller
SMAPE, the performance difference between the two models also
shrinks. When the training size is large enough, the performance
of the two models converges, with a small learning gap. We refer to
the final gap between the two networks when full data is available
as the “transfer learning gap” or TLG. In our future work we will
look at TLG in terms of data complexity.

Furthermore, by fixing the training size, we can also control
the number of frozen layers, n, in the transfer learning model AnB,
and investigate the performance improvement of different n’s. The
result is shown in Figure 3b. As we increase the depth of transfered
layers, the performance gain diminishes. We also reveal that there
is a diminishing rate of return on forecasting performance as a
function of the number of trainable layers.

In our experiments we used simple NULL count and VAR com-
putation approaches to do threshold classification of time-series
into sparse and noisy classes. In Figure 4 different time-series class
performance is shown. Three classes of time-series are used as
input: (i) seasonal, (ii) noisy and (iii) sparse. A model that uses
transfer learning always outperforms an equivalent model with
limited history, however, its performance is highest for noisy data.
This shows that the nonlinearity presented in the noisy data are
modeled better by the transfer learned model.

4.2 Computation resources
A major motivation for this work was to cut the training and in-
ference cost of time-series models in production. The current state
of the art is to train a single model per time-series. This is com-
putationally unsustainable as the number of time-series increases.
The transfer learning approach presented in this paper is able to
alleviate the computational burden while providing competitive
results.

With transfer learning, it is possible to train a single model that
does inference onN time-series whereN can be in the thousands (or
hundreds of thousands). This results in many orders of magnitude
reduction if resources needed for training, inference and storage
with a small performance hit (see Figure 5a).

4.3 Democratizing Forecasting
Time-series forecasting has been primarily accessible to experts
[5]. With a growing importance of the time-series forecasting field,
however, ability for non-experts to generate reasonable forecasts
becomes increasingly important. Previouswork [12] aims to provide
automated time-series model selection, however, these techniques
do not scale for millions of time-series due to per-timeseries model
retraining.

Our goal is to use transfer learning to democratize the time-series
forecasting field making non-experts get decent results competitive
with the experts in the field. Figure 5b provides an overview of our
online forecasting tool that accepts a time-series data and using
the novel time-series transfer learning strategy presented, provides
a forecast. This tool will allow ImageNet-like data collection [14]
for an important and niche market that time-series forecasting is
becoming.

4.4 Abstract Feature Extraction from LSTM for
Time Series Classification

The proposed method can successfully extract generalized features
from time series (via the bottleneck layer discussion in Section 2.1).
Such features are used for unlabelled time series classification and
we show substantial improvements on classification accuracy over
only using traditional features/statistics of time series. We use the
standard UCR time-series classification dataset [4]. The accuracy of
the classifier is shown in Figure 6. The y-axis is the accuracy of the
classifier. Each bar shows the accuracy for a certain category. The
classifier is trained using either only standard time-series features
(e.g., variance, seasonality, trend), or the abstract features extracted
by the proposed method. Besides the difference of features, all other
settings (machine learning model, training/testing size, etc.) are
identical for two classifiers. The top of the blue bar is the accuracy
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(a) (b)

Figure 3: (a) Performance comparison of deep LSTMmodels between trainingwith single time series and trainingwith transfer
learning. The x-axis is the training size; the y-axis is SMAPE. The red curve represents single time series-trained model; the
blue curve represents model using transfer learning. The performance gap is huge for short training sizes. When training size
increases, the performance difference shrinks. Each round dot represents the mean SMAPE of all customers from B2, and the
error bar illustrates the standard deviation of SMAPE over 58,000 customers. (b) Transfer learning performance for models
with different transferred layers. The x-axis is the number of transferred layers from the base model, the y-axis is SMAPE.
The meaning of round dots and error bars is the same as the meaning in (a).

Figure 4: Transfer learning performance for different types
of time series. They-axis is SMAPE. Transfer learning brings
substantial improvements for sparse and noisy time series.
The meaning of the bars and error bars is the same as the
meaning of round dots and error bars in (a).

for classifier with standard features, and the top of the red bar is
the accuracy for classifier with auto-encoder extracted features.
Hence, the length of the red bar demonstrates a great boost in
performance relative to the baseline method of using standard time-
series features.

4.5 Transfer Learning for Time Series
Disaggregation

We show transferability of the learned time-series features for dis-
aggregation. In particular, we aim to estimate individual appliance
usage given an aggregate power consumption. We compare the
disaggregation performance relative to the standard LSTM model,
by using Pecan Street dataset [21], which contains hourly measure-
ment of power consumption of homes and individual appliances
from 345 homes with each having complete record for at least one
appliance, mainly located in Austin, Texas, in 2016. We use the
pre-trained model on a large, generalized dataset, then fine-tune
the last prediction layer for each individual time series on the disag-
gregation task. The individual time series is different from any time
series in the generalized dataset. The disaggregation performance
is shown in Figure 7. The layout of Figure 7 is similar with the
layout of Figure 6. It is shown that using transfer learning, the accu-
racy for disaggregation of different appliance types is substantially
increased.

4.6 Transfer Learning for Time Series
Forecasting

We also demonstrate the transferability of time series forecasting
models. To train the forecasting model with transfer learning, we
also first use the pre-trained LSTM based forecasting model on a
large dataset. Then, for any individual time series (not from the large
dataset), we fine tune the fully connected layers of the LSTM model
based on the individual data. We use a large-scale electricity dataset
described in Section 3. We also test the transferability of time-
series forecasting on standard M3 dataset. The result is shown in
Figure 8a and Figure 8b. The y-axis is the symmetric mean absolute
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(a) (b)

Figure 5: (a) The presented Transfer Learned Model excels in compute power savings relative to the performance hit. (b) Our
online forecasting tool will use the transfer learning technique for time-series to democrotize the time-series forecasting
process provide high quality forecasts for everyone with dramatically low computational cost.

Figure 6: Performance comparison of classification/clustering task on the UCR dataset by directly using the learned features
in traditional machine learning models.

percentage error(SMAPE). We compare the performances for both
in-sample training data, and out-of-sample test data. The constant
improvements of using transfer learning (red bars) over not using
transfer learning (blue bars) show competitive performance even
on short time-series such as those in the M3 dataset. Note that
we trained a single model using the PG&E dataset instead of M3
leveraging transfer learning while other approaches trained a single
specialized model per time-series in M3 (3K total). Transfer learning
shows competitive results while using only a fraction of the training
and inference cost (see Section 4.2).

5 CONCLUSION
It is well known that transfer learning exists for images. In this
paper, we demonstrated transfer learning for time series. We have
introduced a new loss function that aims to provide both regres-
sion loss, which is important for our forecasting objective, and
a reconstruction loss, which is important for generalization and
transferability of the network.

We have shown that our approach outperforms the baseline deep
learning methods used for forecasting. More specifically, we have
shown a dramatic forecasting accuracy improvement with trans-
fer learning under small to medium training data size conditions.
Furthermore, we have identified compute cost improvements when



Reconstruction and Regression Loss for
Time-Series Transfer Learning SIGKDD MiLeTS’18, August 2018, London, United Kingdom

Figure 7: Transfer learning applied to the disaggregation tasks.

(a) (b)

Figure 8: (a),(b) Forecasting task evaluation by leveraging transfer learning on new datasets.

using our time-series transfer learning approach. Finally, we have
also shown the transferability of the learned time-series features to
classification and disaggregation tasks.

For our future work, we will compare transfer learning across
different architectures in terms of stability and applicability for
unseen target classes focusing more on theoretical guarantees of
transfer learning. We are also currently focusing on providing this
work as a service for practitioners to use as an online or open-source

tool for time-series feature generation or as an offline pre-trained
model to be used as a prior for time-series machine learning tasks.
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