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ABSTRACT
Detecting event related change points on dynamic networks be-
comes an increasingly important task, as a change in network’s
structure may associate with a change in function of the networked
system. However, general change point detection methods either
fail to extract effective features or do not scale well. In this work,
we introduce the distribution of nodes’ importance to characterize
static networks, the profile of a network that allows for networks’
comparison and clustering on snapshots of dynamic networks.
Based on this, we develop an approach to detect change points
on dynamical networks by segmenting the snapshots into disjoint
clusters, which can guarantee the scalability on large dynamical
networks. Specifically, we construct a hyper-network whose nodes
represent the snapshots. Then we do community detection on the
hyper-network and serialize the community detection results in
chronological order. The resultant sequence naturally indicates the
potential changes. Experiments on both synthetic and real-world
networks show the outperformance of our framework compared to
the state of the art methods.

KEYWORDS
Dynamic networks, change point detection, hyper-network, node
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1 INTRODUCTION
With powerful ability to express complex relationships, networks
are always used to model complex systems. Generally, elements of
the system are represented by network nodes while interactions
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between the elements are represented by network ties. Examples
include Senate co-sponsorship network connecting congressper-
sons [15], international trade network connecting countries or
economies [16], and MIT proximity network connecting subjects
who are physically in close proximity to each other [13], and so on.
Those networks are all temporally evolving and generally called
dynamic networks. Such dynamic networks are often represented
by the snapshot model, where each network provides a snapshot
of the interactions over a logical time-interval. Over dynamic net-
works, one of the most challenging task is change point detection,
aiming to find time points where significant changes occur, or
which according to Type 4 "Event and Change Detection" in [14]
are defined as those snapshots that are significantly different from
predecessors.

In recent years, with a growing interest focused on such a task,
many approaches have been proposed. Studies can be categorized
into two groups, i.e., unsupervised methods and supervised meth-
ods. The former is called anomaly detection in [9] while the latter
mainly refers to classification methods. Among existing unsuper-
vised approaches, there are roughly two lines (trends), i.e., genera-
tive models and similarity-based approaches. Generative models
assume that there is some underlying model governing the genera-
tive process of networks. Those models such as EdgeMonitoring
[15] and GHRG [13] typically construct a model of what is consid-
ered "normal" or expected, then flag deviations from this model as
the anomalous. Similarity-based approaches are directly based on
the observable networks. This kind of method can be formulated as
in [14]: Given a network sequenceG(t) with a fixed length T and a
scoring function f : Gt → R, a change is defined as a time point t ,
if | f (Gt ) − f (Gt−1)| > c0 and | f (Gt ) − f (Gt+1)| ≤ c0. An essential
problem for this kind of approach is how to measure the similarity
of networks, which is the premise of clustering network sequence
to detect change points [2, 17].

Although those methods have been successfully applied in some
real-world networks, there are emerging issues to be addressed
when we face the overwhelming scale (in terms of both network
size and the number of snapshots) and the complex evolving pro-
cess of the dynamic networks. First, real-world networks are very
large in size and also evolve with time. As their size grows, the
complexity of hypothesis testing based approaches such as GHRG
grows as well. It has been shown [15] that GHRG takes 60h to detect

2018-07-03 11:30. Page 1 of 1–9.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MiLeTS ’18, August 2018, London, United Kingdom Tingting Zhu, Ping Li, Kaiqi Chen, Yan Chen, and Lanlan Yu

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Toy example to show global change, local change
and isomorphic change on a two-community network.

changes in the weekly Enron networks whose network size is 150.
Second, selecting the most suitable summary features to help with
supervised or unsupervised learning scheme is not a trivial task. In
particular, for the network’s structure, how to extract the features
is still a considerable question. On the other hand, changes can be
located at different level of networks. In fact, except for collective
anticipation of or response to external events or system "shocks",
there are still some events associated with minor or local changes
of networks [16]. When we summarize the network and model
the network from a global perspective, we may fail to detect some
local changes. Moreover, there is a special type of change when
two consecutive network snapshots are isomorphic, which may be
related to the reorganization of the networked system (as shown in
Fig. 1) but ignored by most of the existing methods.

In this paper, we propose a change-point detection framework
based on clustering hyper-network to detect both global, local and
even isomorphic changes. On assumption that network snapshots
in between two successive changes are temporally coherent, we de-
velop a two-step segmentation scheme to detect the change points
in dynamically evolving networks. Namely, we summarize the net-
work snapshot sequence that represents the dynamical network
based on their features. Then, we serialize the summarization result
and finally gain a segmentation of the network sequence. Conse-
quently, the beginning of each segment can be flagged as a potential
change.

Our main contributions are two-fold:
1. Summarize networks by leveraging nodes’ importance: Net-

work snapshots are summarized according to the relative impor-
tance of the nodes at the corresponding time point, and the dis-
similarity of the snapshots is measured through comparing their
summarizations using Jensen-Shannon divergence.

2. Present a new clustering scheme on change-point detection:
instead of employing hierarchical clustering methodology, we con-
struct a hyper-network by connecting the snapshots and detect
the communities on the hyper-network, then we utilize the tempo-
ral information in serializing the clustering results to segment the

network sequence. Accordingly, the cut points are identified to be
change points.

The remainder of the paper is organized as follows. In Section
2, we give a brief review of related works, some of which will be
compared with our framework. Then we formulate the change-
point detection task and describe the proposed framework in detail
in Section 3. After that, we experimentally evaluate the proposed
scheme on both synthetic and real-world networks in Section 4.
Finally, we give concluding remarks and discussion of future works
in Section 5.

2 RELATEDWORK
2.1 Similarity-based methods
As we aforementioned in Section 1, what features we extract from
each network and how to compare the extracted features are both of
significance. Many related works contribute a lot to feature extrac-
tion. Akoglu et al. [1] extract "behavior" features via decomposition
eigenvector of the constructed correlation matrix of node pairs over
specific time window (EigenBehavior).

On the basis of sociological theories, Koutra et al. [8] utilize fast
belief propagation to derive pairwise vertex affinity scores as fea-
tures of networks. Here, the feature is about how much each vertex
influences another vertex. Essentially, this feature represents the
connectivity of networks, which contains much more information
than the adjacency matrix for it captures 1-step, 2-step, 3-step etc.
neighborhoods in a weighted way.

On assumption that real-world networks follow global evolu-
tionary trends, and the change points correspond to some moderate
to high changes of this trends, features named Jaccard coefficient
either based on node sets or edge sets for each network are con-
structed by [2].

From the literature, we can see that different features are ex-
tracted or constructed from a variety of perspectives. Besides, as
to detect change points, there are also some other choices, e.g.,
quality control with individual moving range used in [8]. Berlin-
gerio et.al [2] devise a methodology hierarchically clustering the
networks based on the Jaccard coefficient features. Networks follow
a constant trend will be in the same cluster and the beginning of
each cluster indicates a change in counter-trend with the previous
cluster.

Different from clustering methods, a method named DynSnap
proposed in [4] automatically slices the time evolution process of a
complex system to intervals in the event landscape. Based on an
assumption that the adjacent intervals have different but not too
dissimilar sets of events, they find each slice by maximizing the
similarity between the sets of event on consecutive time intervals.
The approach is not directly designed for change-point detection.
However, it does find change points which coincide with bound-
aries of its’ intervals. Moreover, by modeling the events with the
emergence or absence of the edges of time-evolving networks, Dyn-
Snap can be applied to change point detection in evolving networks.
In this work, we use it as a baseline method.

2.2 Generative models
The basic idea of generative models is to generate a probabilistic
model from multiple snapshots and then detect change points by
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Figure 2: Overview of the Framework of Change-Point Detection

testing a new snapshot with the estimated model. The difference
between those generative models lies in the model construction
and the method for determining outliers. Focusing on capturing
hierarchical community structures, Peel et.al [13] put forward a
method named GHRG, in which they assume that the observable
networks are generated from a particular model and there is a
change only when the generative model shifts from a structural
"normal" at some point in time. The advantage of this method is
that p-value accompanied with the results quantifies the confidence
of the conclusion and the change of the network structure can be
visualized to help one get an intuitive understanding. However, in
order to find a proper threshold, it bootstraps networks from the
generative model, causing it to be a time-consuming and highly
complex method.

Taking the temporal dependency into consideration, Wang et.al
[15] hypothesize that the observed network snapshots are samples
depending on the latent model and the previous snapshot. Different
from GHRG model, they make no assumption on the concrete
form of the generative model. They stress the change of the edges,
proposing a conditionally independent two-state Markov chain
to trace the presence or absence of the edges. Under such model,
they directly extract joint edge probability as "feature" vector to
represent each snapshot, and then, they compute the dissimilarity
score of each consecutive snapshots, and flag out a change point
when the dissimilarity score is above a threshold estimated by
permutation test.

Wang et.al [16] study change-point detection problem on net-
works with community structures. Since many existing algorithms
always fail to detect minor and local changes, Wang et. al develop
a hierarchical framework which models both the intra-community
evolution and the inter-community evolution so as to capture and
even distinguish the local and global changes. As the generic design
of their framework, many state-of-the-art change point detection
algorithms can fit into the framework.

3 PROPOSED FRAMEWORK
In this section, we put forward our framework to detect change
points.

3.1 Problem definition
Real world networks are always evolving with time either in their
structure or attributes. With time goes by, there may be some
changes such as insertion or deletion of nodes, even modification
of some attributes [14]. Generally, each observed network can be
viewed as one system state under some evolution patterns. when
some events or "shocks" happen, the underlying pattern will change,
causing change in the networks. Here, we refer to such change
as "EventChange". A special "EventChange" may occur when the
snapshot is structurally isomorphic to its predecessors. We also
include the periodic change into "EventChange" though there’s
no real event behind it. Besides, there is another type of change
called "GeneralChange" which is smoother comparing to the sharp
"EventChange". It happens even when the pattern holds, because
of the change nature of the real world.

Since there are always fluctuations in the original network se-
quence, wemaywrongly treat some "GeneralChange" as "EventChange"
when we directly do the change point detection on the original
scale of networks with an improper threshold. But when our view
changes to pattern level, we can find smoother subsequences and
naturally flag each shift of patterns as change point. That is, if we
know what type of pattern each network snapshot belongs to, we
can precisely detect change points.

ProblemDefinitionGiven a network sequence {Gt }
T−1
t=0 , where

T is the number of snapshots, Gt is the snapshot of a dynami-
cal network at time point t . Et is the corresponding edges of Gt .
Note that each Gt has the same node set V and |V | = N . Oth-
erwise, if Gt has different but overlapping Vt , we assume that
V = V0∪V1∪V2...∪VT−1. Our goal is to find a set S ⊂ {1, 2, ...T − 1}
such that t ∈ S ⇐⇒ Pt , Pt−1, here Pt is the label of the pattern
to which Gt belongs. That is, detection of change points means
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to find all the time points whose pattern label is different from its
predecessor’s.

3.2 Soft Summary on Temporal Compact
Subsequence

Even the pattern that govern the evolution of networks is invisi-
ble, we can still design an algorithm to find change points. Firstly,
it is known that though there exists "GeneralChange", owing to
temporal dependency, network snapshots under the same pattern
are still highly coherent so as to form temporally compact subse-
quence. Thus, it is expecting to find ways to segment the snapshot
sequence by summarizing subsequences. Intuitively, pair-wise clus-
tering technique can be used to segment the network sequence to
find the change points. To be more specific, the target is to encode
the subsequences of snapshots with the same pattern label so long
as there’s a certain similarity to their features. Hereby, we define
the Soft Summary Scheme as follows:

Definition 3.1. Given a network sequence {Gt }
T−1
t=0 , we want to

find an summary scheme f : Gt → f (Gt ) to map each network a
nominal, such that the following objective is minim

min
f

∑
0 ≤ i, j ≤ T − 1
dGi ,Gj ≤ ϵ

δ (f (Gi ), f (G j )), (1)

δ (x ,y) =

{
1 x , y
0 otherwise (2)

where ϵ is a threshold parameter which represents to what extent
the dissimilarity would be tolerated. And d is the distance metric,
which will be discussed in details later. We note that, networks that
are not temporally adjacent may gather together in one cluster,
which is undesirable for our task. Next, the temporal information
will be added to refine the summary result. An overview of the
proposed framework is provided in Fig. 2.

3.3 Feature Extraction and Similarity Measure
It is critical for the proposed soft summary scheme to determine
what features to be extracted and how to compare the extracted
features. As for feature extraction, there are several choices.

Scalar values such as mean degree, mean geodesic distance, mean
local clustering coefficient, are too rough to capture much infor-
mation about a dynamical network. Thus, based on those features,
change-point detection approaches may fail to find some changes.
In [13], it is manifested that the methods that just simply utilizes
those scalar features performs poorly with high false negative rates
even for significant structural changes. In fact, a network is not a
set of elements but an interactive system on which information dif-
fuses and influence flows, simply viewing edges as feature vectors
ignores the interactions of the units in networks and the holistic
network structure. Besides, adjacency matrix or its variants can also
be used as the representation for networks [8]. However, owing to
the high dimensionality and sparsity of real-world networks, it is
clearly unsuitable for further network data analysis. We need to
find a feature which not only contains abundant information about
the network but also be low-dimensional.

To the best of our knowledge, the impacts of different events
vary in range. That is, the changes can be located at different level of

networks, some changes are related just with a small spatial extent
on network. It is of particular interest not only to find the change
points corresponding to an event, but also the top-k nodes, edges,
or parts of the graphs that contribute most to the change. To this
end, we extract features at local level to detect both local and global
changes. Precisely, we choose the relative importance of the nodes
in the snapshots as local feature. There are many ways to measure
the node importance, such as PageRank [12] which computes a
global ranking of all web pages regardless of their content, based
solely on their location in the Web’s graph structure, LeaderRank
[11], an adaptive and parameter-free algorithm to rank users or
quantify user influence in social networks, ClusterRank [3], etc. The
motivation behind our choice is that, from the viewpoint of network
science, node importance indicates the role of a node in the network
and is intimately related to the node’s neighborhoods at different
scales. The change in structure can be reflected in the change of
node importance. Hence we measure the similarities of network
snapshots by considering the change of the roles individuals play in
the snapshots. By using a specific measure of node importance, we
get the feature sequence {Ft } T−1t=0 corresponding to the dynamical
network {Gt }

T−1
t=0 .

As most of random walk based ranking methods suggest the
probability explanation of node importance (also known as node
centrality [6]), then the feature vector consisting of the scores
of node importance can be treated as the probability distribution
where each score is the probability of a node being visited by a
random walker (Note that, the node importance scores are normal-
ized to abide by the probability distribution rule). Consequently,
the distance between two snapshots is measured by comparing
their corresponding probability distributions. Here we use Jensen-
Shannon divergence to compute the distance as follows:

dGi ,G j = dFi ,Fj = JS(Fi | |Fj ) =
1
2
{DKL(Fi | |

Fi + Fj

2
)+DKL(Fj | |

Fi + Fj

2
)}

(3)
where

DKL(Fk | |Fl ) = −

N∑
i=1

Fk (i) ln
Fl (i)

Fk (i)
(4)

Eq. 4 can be viewed as the weighted summation of the feature
difference for node i between two snapshots, inwhich the influential
nodes are weighted more. Thus, the more important the feature
Fk (i), the more contribution the ith term to the distance formulated
by Eq. 4. For the convenience of computing, we convert the distance
measure in Eq. 3 to similarity using the (Gaussian) radial basis
function kernel as follows:

KP,Q = exp(−
||P −Q | |22
2 ∗ α2

). (5)

Then the similarity measure is formulated as:

simP,Q = exp(−
d2P,Q

2 ∗ α2
), (6)

where α is a free parameter representing the width of the Gaussian
kernel.
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Algorithm 1: Hyper-network Construction
Input: Network Feature sequence {F0, F1, F2...FT−1},free

parameter α
Output: hyper-network Ghyper
Construct Ghyper with N=T, Initialize weightsW = RT×T

for i = 0 To T − 1 do
for j = 0 To T − 1 do

updateWi j = simFi ,Fj = exp(−
d2
Fi ,Fj
2∗α 2 )

end
end
return Ghyper whose weighted adjacency matrix isW

3.4 Hyper-network Construction
As one can see, Eq. 1 is an integer programming problem shown
to be NP-hard. Inspired by [10], we transform this problem into
community detection on the hyper-network represented byGhyper
:

min
y∈RT

yT(D −W )y

s .t .

{
1TDy = 0
yTDy = 1

(7)

Here, each node of Ghyper represents a snapshot of the original
network sequence, and the edges of Ghyper is weighted by the
similarities between pairs of snapshots.W is the corresponding
weighted adjacency matrix ofGhyper .D is a diagonal degree matrix
with Dii =

∑
jWi j . y ∈ RT , and yi = f (Gi ). And 1 is a vector of

all 1’s. Following [10], these constrains added here are to avoid
trivial solutions. In practice, for Eq. 7, one usually compute several
(e.g., K) eigenvectors as embedding of Ghyper , and then utilize
some clustering algorithms on the embedding space to find the
clusters (communities in Ghyper ). In general, the embedding space
are low-dimensional, for K is much smaller than N . In this way,
each snapshot is summarized (labeled) by its community identity
in Ghyper .

There are several simple clustering algorithms available to iden-
tify the clusters of hyper-nodes corresponding to the communities
in Ghyper , e.g., Discretize, KMeans, Mean-shift and DB-Scan as
well. Among them, we recommend Discretize for this method is
less sensitive to random initialization than KMeans, and it do not
introduce more parameters than DB-Scan and Mean-shift.

3.5 Serialization and Detection
In Soft Summary Scheme, we cluster the networks ignoring the
temporal information, which is not enough to identify possible
change points. Because the resultant clusters may include some
snapshots that are similar to each other but separated by other
clusters on timeline. Next, we serialize the clustering results by
encoding the network sequence with corresponding community
identity (some nominal values like ’A’, ’B’, etc). Then the encoding
result naturally gives a segmentation of the sequence, as Fig. 4
shows. The alteration of the community identity in time reflects the
boundary of the segments. Namely, the beginning of one segment
indicates a change point. More formally:

Algorithm 2: Change-point Detection Framework
Input: parameter k , α and network sequence

{G0,G1,G2...GT−1}
Output: change points ChangeSet
for t = 0 To T − 1 do

Extract Summary Feature Ft of Gt ▷ see section 3.3
end
Construct Ghyper with adjacency matrix ▷ see section 3.4
Solve optimization problem Eq. 7 by detecting communities on
Ghyper ▷ see section 3.4
Serialize the community detection results
{ Below: Detect all the change points }
p = C0
ChangeSet = �

for t = 1 To T-1 do
if Ct = p then

continue
end
else

p = Ct
ChangeSet ∪ {t}

end
end
return ChangeSet

Definition (Detection based on Community detection on
Hyper-network) Given the community detection result of the
hyper-network, we serialize the hyper-network node into a sum-
mary sequence {Ct }

T−1
t=0 ( where Ct is the cluster label of Gt ) by

combining the temporal information. Thus the time point t ∈

{1, ...T − 1} will be flagged out if Ct , Ct−1.
Algorithm 2 gives the details of the whole procedure and Fig. 2

give a graphical depiction of our scheme.

4 EXPERIMENTS AND EVALUATION
This section evaluates the proposed approach on one synthetic
network and two real-world networks with ground truth events
and change points.

4.1 Synthetic Data and Real-world data
Synthetic Data We manually construct a series of small synthetic
networks as the snapshots of a dynamical network with 9 nodes
and length T = 14. Moreover, each snapshot is unweighted and
undirected. As shown in Fig. 3, we incorporate 8 either global or
local changes in the network sequence.

MIT Proximity networksMIT proximity network is extracted
from The Reality Mining dataset[5] collected by The Reality Mining
project, which depicts the proximity between 94 subjects including
faculty and graduate students via Bluetooth device discovery scans.
More precisely, the edges of the network denote physical proximity
of pairs of subjects and are weighted by the numbers of scans
of that particular week. According to the findings on the daily
Bluetooth data in [4], it is suggested that the basic evolutionary
timescale is about one week. Therefore, in this work, we use one
week as the time scale to extract a sequence of weekly networks
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Figure 3: Synthetic network sequence. T = 14 and N = 9. Noticeable Community Structure(Global change) at time point
1, Position of two nodes in one community changes(Local change, isomorphic) at time point 3, One node shift from one
community to another(Global change, isomorphic) at time point 4, link within one community reduces(Local change) at time
point 6, Link within one community increases(Local change) at time point 7, Link between the two community breaks(Global
change) at time point 9, The two community combine(Global change) at time point 10, Almost all the links broken(Global
change) at time point 12.

Figure 4: Serialized community detection results in detecting change points on synthetic networks based on our method. The
corresponding community label of each Gt is given by the red letter over it. The segments of the sequence is given by grey
dotted vertical lines. There are in total 8 changes{1, 3, 4, 6, 7, 9, 10, 12}. Each change point is a beginning of one segment.

Table 1: Comparison of the four methods on three dynamic networks. On synthetic networks
(Toy), we choose the width of the Gaussian kernel α = 0.001 and number of eigenvectors K = 7;
on MIT proximity networks (MIT), α = 0.001,K = 7; on Enron email networks (Enron), α ≈

0.01284,K = 7. Note that in the three network sequence, we all choose the inverse importance
rank as features. As for the parameter (i.e., window size w for short) in GHRG, On Toy, we
choose the threshold w = 3; on MIT, w = 4; on Enron, w = 4. And for EigenBehavior, we do
experiments on three different features (EgoNet, Degree and ClusterCoeff) and we chose the
best result for F1 on each dynamic network.

Method Toy MIT Enron

Precision Recall F1 Precision Recall F1 Precision Recall F1

DynSnap 50 12.5 20 66.67 10 17.39 46.43 72.22 56.52
GHRG 100 37.5 54.55 41.94 65 50.98 42.86 16.67 24

EigenBehavior 75 37.5 50 50 10 16.67 72.73 44.44 55.17
OUR 100 100 100 55.56 100 71.43 56.67 94.44 70.83
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Figure 5: Change Point Detection on synthetic networks. The change points detected using the Four methods (Our, GHRG,
DynSnap, EigenBehavior) are marked with green vertical bars. The community clusters obtained by our method are also
shown in the figure with blue horizontal lines. We also indicate the known events by the colored vertical bars spanning all
methods.

Figure 6: Change-point Detection on MIT proximity network. The labels are given as in Fig. 5.

from 30th August 2004 to 10th July 2005. As a result, we obtain
T = 45 snapshots from the dataset. During the time, there are some
known external events such as exam period and spring vacation
from the MIT academic calendar or internal Media Lab events as
shown in Fig. 6. Then the time corresponding to each event is
labeled as the ground truth change point.

Enron Email networks The Enron Email Dataset is comprised
of emails among many senior managers of the Enron energy com-
pany and was made public during the legal investigation. Different
from MIT proximity, the time span of Enron Email Dataset is very
long. Here we extract a sequence of monthly networks withT = 44
and N = 147 from November 1998 to June 2002, where each net-
work is a snapshot of the communication between the managers

within the corresponding month. Fig. 7 shows the major events
(labeled as the ground truth change points) in this dataset.

We note that there may be some unreported events in the dataset,
then the ground truth will be incomplete. For example, the MIT
ACADEMIC CALENDAR 2004-2005 just use "SUMMER SESSION
(incl. Exam Period)" to record the period JUNE 6 (Mon) - AUG
16 (Tues) so that we don’t have information about the events that
happened in that period.1 That is, the "false positives" are not neces-
sarily incorrect as [7] says. Thus, for a fair comparison, we compare
our model and the baselines by using the comprehensive evaluation
measure F1.

1https://web.archive.org/web/20041009182037/http://web.mit.edu/registrar/www/calendar.html
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Figure 7: Change-point Detection on Enron email network. The labels are given as in Fig. 5.

4.2 Results
To evaluate the proposed method, we systematically compare it
with three aforementioned detection algorithms (GHRG, DynSnap
and EigenBehavior) on the synthetic and real-world datasets. The
main results are reported in Table 1 where the methods are required
to identify the exact change positions. We see that our approach
outperforms the baseline methods. By examining the recall rate
specifically, the efficiency of our method is remarkably better than
the others’. From Fig. 5, closer examination of the change points
detected with each of the baseline methods reveals that for the
synthetic network sequence GHRG only picks out 3 change points
corresponding to global changes, i.e., the emergence and split of
community structures, while DynSnap distinguishes one global-
change point. Although EigenBehavior identifies both global (one)
and local changes (two), it still misses a large proportion of change
points. In contrast, our method detects all types of change points
with no false detection.

For MIT proximity network sequence, it is shown in Fig. 6 that
the baseline methods either miss the majority of the events or
identify much additional change points. In particular, DynSnap and
EigenBehavior only detect a few change points include Exam week
end and Start of the semester and Final week end, which explains
their relatively high precision. And GHRG fails to detect the end of
Exam Week (indicted by week 11) and the start of Spring vacation
(indicted byweek 29). In comparison to GHRG, our method achieves
better recall with higher precision. By comprehensive evaluation
of precision and recall, we can see that our method outperforms
the three state-of-the art methods.

The result for the four methods on Enron are shown in Fig. 7.
Different from the MIT proximity network, we find GHRG and
EigenBehavior behaves poorly in recall. They miss many change

points. Both our method and DynSnap detect most of the change
points but wrongly treat some points as change points. But the
number of regular events being identified as change points in our
method is less than DynSnap. Moreover, our method finds more
changes in the period before the launch of Enron online (Nov 1999,
month index is 12). By looking at the email communication records
during those days, we find that the network structure changes dra-
matically, which may explain why both our approach and DynSnap
detect a lot of changes during that period. However, our detec-
tion highly coincides with the scheduled events after the launch of
Enron online.

5 CONCLUSIONS
In this paper, we developed an unsupervised similarity based change
point detectionmethod for dynamically evolving networks. A hyper-
network clustering framework, along with its construction based on
structural feature extraction and similarity measurement, was pro-
posed to summarize the network sequence and then detect change
points. Different from existing topological feature assembling meth-
ods, we use the role of a node to characterize the local information
on networks and the role distribution of the nodes to capture the
global information. This way, by quantifying the change in this fea-
ture for network snapshots, our method can effectively identify the
global and local changes in the sequence. The experimental results
showed the advantages of our method over existing methods.
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