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ABSTRACT
“Is there any pattern in location-based, mobile check-in activities?”
“If yes, is it possible to accurately forecast the intention of a user’s
next check-in, given his/her check-in history?” To answer these
questions, we study and analyze probably the largest mobile check-
in datasets, containing 20million check-in activities from 0.4million
users. We provide two observations—“work-n-relax” and “diurnal-
n-nocturnal”—showing that the intentions of users’ check-ins are
strongly associated with time. Furthermore, the category of each
check-in venue, which reveals users’ intentions, has structure and
forms taxonomy. In this paper, we proposeNested LSTM that takes
both (a) time and (b) taxonomy structure from check-in sequences
into consideration, providing accurate predictions on the category
of a user’s next check-in location. Nested LSTM also projects each
category into an embedding space, providing a new representation
with strong semantic meanings. Experimental results are poised
to demonstrate the effectiveness of the proposed Nested LSTM:
(a) Nested LSTM improves Accuracy@5 by 4.22% on average, and
(b) Nested LSTM learns a better taxonomy embedding for clus-
tering categories, which improves Silhouette Coefficient by 1.5X.
Both results (a)(b) are compared with LSTM-based, state-of-the-art
approaches.

KEYWORDS
Long Short-Term Memory; Location-Based Social Network; Point
of Interest; Behavior Model

1 INTRODUCTION
“Is there any pattern in location-based, mobile check-in activities?” “If
yes, is it possible to accurately forecast the intention of a user’s next
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Figure 1: User interface of Foursquare application on a
smartphone. When a user presses the button “Breakfast”,
Foursquare application will show a list of POIs which falls
into “breakfast” nearby based on GPS.

check-in, given his/her check-in history?” These questions serve as
the motivations for this work.

Location-Based Social Networks (LBSN) are rising due to the
ubiquity of GPS-equipped smartphones. In LBSN, users bridge the
gap between the physical world and the online social networks
by checking in their footprints on the visited venues, referred as
Point Of Interests (POIs). The category of a POI is often associated
with certain activities related to a user’s intention [10, 12, 15, 21].
Furthermore, a user’s next intention and activity can be modeled
and even predicted by analyzing these temporal check-in sequences
on POIs. For example, if a person checks in at the office during the
daytime, after work he/she may check in at a bar or a restaurant,
and eventually checks in at home. Similarly, if a traveler frequently
checks in at sightseeing spots, he/she may later on checking in
at a metro station or hotel. Understanding and modeling these
temporal dynamics of users’ intentions or behaviors enable many
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Figure 2: Example taxonomy of hierarchical category in
Foursquare and Jiepang datasets. One parent category in a
taxonomy contains several child categories. Similarly, one
child category contains several grandchild categories.

useful applications, such as recommendation systems which are
widely deployed in many products [24]. Given the history of his/her
check-ins, POI recommender automatically suggests a venue that
matches his/her next intention and activity, such as a relaxing bar
after work or a nearby sightseeing spot after getting out from a
metro.

One challenge in LBSN is how to accurately forecast the next in-
tention of a user. Figure 1 demonstrates a mobile application called
“Foursquare” [1], which provides location-based search services and
recommendations. First, a user can select a category which he/she
is interested in, and then the app will show a list of POIs which
falls into that category nearby based on GPS. If a user’s intention
or preference can be predicted, such a model can be integrated
into a recommender for more better suggestions, which in turn
improves user experience. To better understand users’ intentions
and preferences, we study the public check-in logs from Foursquare
and Jiepang [2] containing 20 million check-in activities from 0.4
million users in total. The categories of venues from these datasets
are hierarchical and form a taxonomy shown in Figure 2. For exam-
ple, parent category “College & University” includes child categories
“Academic Building” and “Stadium” while child category “Academic
Building” also includes “History Building” and “Math Building”.

A challenge here is how to model both the taxonomy and long
sequences of LBSN data at the same time. For modeling sequences,
one popular and effective approach is Long Short-Term Memory
(LSTM) [8]—famous for its superior ability to preserve sequence
information over time. The order of check-in sequences is the key
to modeling the subtle intention from a user; for example, a person
takes metro to company in the morning, eats lunch at a restaurant,
has a teatime in a coffee shop, and chats with friends at a bar after
work; therefore, the expansion of these logs is exactly fitting to
LSTM’s characteristic of sequence modeling. We aim at predicting
the next category of POI which a user is interested in by expanding
user check-in logs as input sequences of LSTM to model users’
activity preferences.

This paper brings the following contributions:

• We analyze two large-scale Location-Based Social Networks
datasets from Foursquare and Jiepang, and provide two obser-
vations: “work-n-relax” and “diurnal-n-nocturnal” showing
that the intentions of users’ check-ins are strongly associated
with time.

• We propose a novel and effective model: Nested LSTM that
accurately forecasts the next POI category. Nested LSTM
also captures the hierarchical structure of POI categories.

• To understand the effectiveness of Nested LSTM, we also
perform a comprehensive study and comparison with state-
of-the-art approaches. Experimental results show that, on av-
erage, Nested LSTM outperforms state-of-the-art approaches
by 4.22% on Accuracy@5 metric.

• Furthermore, Nested LSTM learns a more effective taxonomy
embedding for clustering categories. Experimental results
show that Nested LSTM improves Silhouette Coefficient by
1.5X, compared with the embedding learned by vanilla LSTM.

• Finally, we provide a practitioners’ guide for deployingNested
LSTM to forecast the next POI category. Nested LSTM can
be seamlessly integrated into recommendation system for
improving user experience.

The remainder of this paper is organized as follows: Section 2
provides the problem definition and specifications of Foursquare
and Jiepang datasets. Section 3 provides a crash course to LSTM
and the details of the proposed Nested LSTM. Section 4 presents
the experimental results and the analysis of taxonomy embedding.
Section 5 provides a practitioners’ guide, and Section 6 provides
previous works. Finally, Section 7 concludes this paper.

2 PROBLEM DEFINITION
In this section, we provide an overview of Foursquare and Jiepang
datasets, and two observations: “work-n-relax” and “diurnal-n-nocturnal”
showing that the intentions of users’ check-in are strongly associ-
ated with time. Next, we formulate the definition of our problem.
Finally, we detail the illustration of data preprocessing.

2.1 Datasets: Foursquare & Jiepang
We analyze the public check-in posts from Foursquare and Jiepang
websites. The specifications of both datasets are as follows: Four-
square dataset contains over 11 million check-in activities at 560
thousand venues collected from 56 thousand users in the United
States from February 2010 to January 2011; Jiepang contains over
8 million check-in activities at 87 thousand venues collected from
382 thousand users in China from December 2010 to March 2013.
Each check-in post contains an unique user ID, an unique venue ID
indicating the POI and a time stamp of the check-in happened. We
remove the abnormal check-in logs (e.g., the latitude and longitude
of a venue are all 999.0), which account for less than 0.001% of
both datasets. All the venues in the datasets are marked with the
hierarchical categories, as illustrated in Figure 2. There are 312 child
categories within 12 parent categories in the Foursquare dataset and
51 child categories within 7 parent categories in the Jiepang dataset.
We treat singular and plural forms as the same category. We only
implement two-level categories (parent and child category) of our
taxonomy in the following experiments because some information
of the grandchild categories are incompleted.

D. Yang et al. [20] address that users’ activities are often asso-
ciated with the time called "Temporal Correlation". For example,
D. Yang et al. observe that people usually go to a coffee shop or a
burger joint between 13:00 to 14:00 on a weekday, stay at a bar be-
tween 21:00 to 22:00 on Friday and go to the gym or outdoor places
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Figure 3: Percentage of each parent category in a week af-
ter we normalize the actual check-in count in Foursquare
dataset. The percentage of category associated with “work”
in weekdays is larger than the ones on weekends. On the
contrary, the percentage of category associated with “relax”
on weekends is larger than the ones in weekdays.

between 16:00 and 17:00 on weekend. The order of these check-in
sequences causes a strong weekly pattern for a user. Therefore, we
analyze the correlation of time and category in our datasets and
get two observations as follows.

Observation 1. “Work-n-relax” pattern: weekday check-ins can
usually be associated with “work,” and weekend check-ins are usually
related to entertainment & relax.

Figure 3 shows the breakdown of each parent category over a
week after we normalize the actual check-in count in Foursquare
dataset. The number of check-in count increases from Monday to
Saturday and starts to decrease until Monday. On weekdays (i.e.,
from Monday to Friday), the percentage of category “College &
University”, “Professional & Other places” and “Home, Work, Others”
are much larger than the ones on weekends, said that people usu-
ally work and study on weekdays. On weekends, the percentage
of category “Nightlife”, “Shop & Service”, “Arts & Entertainment”
and “Great Outdoors” are much larger than the ones on weekdays,
said that people spend their time on relaxing and entertainment on
weekends. Although “Travel & Transport”, “Travel Spots” and “Food”
have almost the same percentage on weekdays or weekends, we
speculate for two reasons: 1) Commuters often check in at trans-
portations on weekdays; however, travelers occasionally check in
at travel spots on weekends. Therefore, the difference between the
percentage of category “Travel & Transport” and “Travel Spots” on
weekdays and weekends are smoothed and almost the same. 2)
People go to restaurants and shops for food everyday because of
life necessities.

Observation 2. “Diurnal-n-nocturnal” pattern: check-in venues
during the day can be very different from the ones during the night.

Figure 4 are three pie charts of the check-in count of parent
categories after we normalize the actual check-in count during a day
in Foursquare dataset, we select the time 3:00 to 3:59, 10:00 to 10:59
and 20:00 to 20:59 which have a strong contrasting pattern to each
other. During 3:00 to 3:59, most people enjoy their nightlife results
in category “Nightlife Spot” accounting over 23%, which is much

Figure 4: Pie charts of each parent category within 3:00 to
3:59, 10:00 to 10:59 and 20:00 to 20:59 after normalizing the
actual check-in count during a day in Foursquare dataset.
The percentage of checked-in category by “diurnal” users in
daytime is larger than the ones at night. On the contrary,
the percentage of checked-in category by “nocturnal” users
at night is larger than the ones in daytime.

larger than daytime. At 10 a.m., commuters take transportations to
work place or school so the check-in count of category “Travel &
Transport” and “Home, Work, Others” increase. Until 20:00, people
who after work or school go to find some food and shop to soothe
the tiredness of a day, that’s why the category “Shop & Service” and
“Food” occupy over 50% of the pie chart.

2.2 Problem Formulation
The problem formulation can be described as: "Given each user’s
check-in sequence, forecast the child category of POI in his/her next
check-in."

Specifically, from each user’s check-in sequence, we partition
them into several instances with length of τ , e.g., instance 1 is 1st

to τ th check-in, instance 2 is 2nd to (τ + 1)th check-in, instance i
is ith to (i + τ − 1)th check-in. We use Figure 5 to better illustrate
the instance partition from a user check-in sequence. The feature
notations of an instance as follows:

• Parent category at jth check-in of an instance, denoted as
xP, j .

• Child category at jth check-in of an instance, denoted as
xC, j .

• Check-in time at jth check-in of an instance, denoted as xT , j .
where j from 1 to τ . Nested LSTM forecasts the child category
of POI in the next check-in, i.e., the (τ + 1)th check-in as label y.
Mathematically, this problem can be expressed as:



MiLeTS ’18, August 2018, London, United Kingdom X. Tseng et al.

Figure 5: One user check-in sequence is partitioned into sev-
eral instances. Each instance is with length of τ : instance 1
contains the 1st to the τ th check-in, instance 2 is the 2nd to
(τ + 1)th check-in, and so on. Given an instance, the goal is
to predict the child category of POI in the next check-in—for
example, given instance 1, the goal is to forecast the child
category of POI in the (τ + 1)th check-in.

Figure 6: The ranking of user check-in count from the most
frequent user to the last correspond to their count. Both of
X-axis and Y-axis take log scale. This distribution matches
power-law-like, which means the check-in count decrease
progressively from most frequent user to the last.

y = f (xP, j ,xC, j ,xT , j ), where j = 1 to τ (1)
The goal here is to find a function f that takes xP, j , xC, j and

xT , j (j = 1 to τ ) as inputs to predicty. Note that we predict the child
category instead of the parent category. As Section 2.1 mentioned,
the species of child categories are muchmore than parent categories.
In simpler words, predicting a child category provides the “fine-
grained” intention or preference of a user. For example, predicting
the next POI category as “Chinese Food Restaurant” reveals more
intention or preference of a user, compared to its parent category
“Food,” which is very important for designing a recommendation
system.

2.3 Data Preprocessing
We model the prediction of the next POI category which a user is
interested in from Eq (1) as a multi-class classification and construct

the training datasets accordingly. Each instance of features consists
of label y that represents the child category of (τ + 1)th check-in
and a set of predictive features x represents an input sequence from
1st to τ th check-in extracted from an instance. The period of each
check-in log between each neighbor is no longer than 24 hours to
ensure the tight relation of each check-in and to filter out inactive
users who seldom check in during a week.

The type of label y is determined based on the child category of
(τ + 1)th check-in of an instance formulated in Section 2.2. We give
each child category an index for y, e.g., the number between 0 to
311 to represent 312 kinds of child category in Foursquare dataset.

For the predictive features x , we leverage the past check-in se-
quences of parent categories, child categories and the check-in
time. We give each xP, j and xC, j an index to represent each parent
category and child category respectively. Then we define xT , j as
features of check-in time in Eq (1) which represent the weekday in
a week and the hour in a day.

Now, the question is: How to select τ from user check-in se-
quences that needed to be included in the datasets for an accurate
prediction? Figure 6 illustrates the ranking of user check-in logs
correspond to their count. This distribution matches power-law-like,
which means the check-in count decreases progressively from the
most frequent user to the last. When τ is smaller, we get a shorter
instance, from both active and inactive users, and we can extract
more training samples. When τ is larger, we can only get a longer
instance from active users, but we can merely extract less training
samples. Therefore, the selection of τ is the first important question
we need to face. We provide experimental results in Section 4.2 for
different values of τ we selected for the best results. Overall, x has
3 kinds of features (xP, j , xC, j and xT , j ) × τ (sequence length per
instance) = 3τ predictive features in a training and testing instance.

3 METHODOLOGY
In this section, we give a crash course of one popular and effective
approach in Neural Networks— Long Short-Term Memory. Then,
we detail the structure and equations of Nested LSTM we proposed.

3.1 Crash Course to Long Short-Term Memory
Recurrent Neural Network (RNN) processes input sequences of
arbitrary length by recursively activating transition function on
a hidden state vector ht . At each time step t , recurrent neurons
receive an input vector xt and their previous hidden state vector
ht−1, then feed into the transition function for the hidden state
vector ht as output. Basically, the transition function of RNN is a
nonlinear transformation between input and output, e.g., the hy-
perbolic tangent function in Eq (2).Wx ,Wh are the weight matrices
for input vector xt and previous hidden state vector ht−1; b is the
bias of this function.

ht = tanh(Wxxt +Whht+1 + b) (2)

During training RNN, the components of the gradient vector in
this form of transition function can grow or decay exponentially
over long sequences. This behavior of RNN causes a serious problem
called “exploding” or “vanishing gradients” [3, 7], which makes RNN
model difficult to learn long-distance correlations in a sequence.
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Figure 7: Structure of Nested LSTM. Two LSTM layers are
used in thismodel: Inner LSTM andOuter LSTM. Inner LSTM
outputs taxonomy embedding hγ , j as the input of Outer
LSTM.

The LSTM architecture solves the problems of exploding and
vanishing gradients by introducing a “memory cell” to preserve cell
state over long periods of time. While numerous LSTM variants
have been introduced, we describe the version used by O. Vinyals
et al. [18] and K. Tai et al. [17].

We define d memory dimensions of LSTM units at each time step
t to be a collection of vectors in Rd . Each unit contains an input
gate it , a forget gate ft , an output gate ot , amemory cell state ct and
a hidden state ht . The value of these gating vectors it , ft and ot are
in [0;1].

it = σ (W (i)
x xt +W

(i)
h ht−1 + b)

ft = σ (W (f )
x xt +W

(f )
h ht−1 + b)

ot = σ (W (o)
x xt +W

(o)
h ht−1 + b)

ut = tanh(W (u)
x xt +W

(u)
h ht−1 + b)

ct = it ⊙ ut + ft ⊙ ct−1
ht = ot ⊙ tanh(ct )

(3)

Eq (3) are the transition equations of a single LSTM unit, where
xt is the input at time step t ,ht−1 is the previous hidden state, ct and
ct−1 are the memory cell states from time step t and previous time
step t − 1, σ denotes the logistic sigmoid function and ⊙ denotes
elementwise multiplication. In general, the forget gate ft controls
the forgotten extent of previous memory cell state ct−1, the input
gate it controls the update extent of each unit, the memory cell
state ct decides the state of this LSTM unit and the output gate
ot controls the exposure of memory cell state ct at time step t .
Therefore, the hidden state vector ht is a partial view of the state of
an LSTM unit’s memory cell state. Since the value of these gating
variables vary for each vector element, the LSTM model can learn
to preserve information after multiple time scales.

3.2 Nested LSTM
We illustrate the detailed framework of Nested LSTM with Figure 7.
At first, we extract input features (xP, j , xC, j , xT , j ) where j = 1
to τ and label y from each instance which already described in
Section 2.3.

In Eq (4), we feed xP, j , xC, j and xT , j into different embedding
layers, which turn indexes of category and check-in time into dense
vectors of fixed size, to produce embedding vectors eP, j , eC, j , and
eT , j .

eP, j = Emb(xP, j )
eC, j = Emb(xC, j )
eT , j = Emb(xT , j )

(4)

In Eq (5), we pack up each sequence of eP, j , eC, j as input of Inner
LSTM to output a taxonomy embedding hγ , j which represents the
hierarchical relationship from parent category to child category.

hγ , j = LSTM(eP, j → eC, j ) (5)
Then, we feed the taxonomy embedding hγ , j and the embedding

vector eT , j into Outer LSTM to capture the sequence information
in Eq (6) and get the last output as the internal vector h. Outer
LSTM feed the internal vector h to softmax layer to make the final
decision of next POI category form N child categories.

h = LSTM(hγ , j , eT , j ) (6)
Softmax function is added in the softmax layer to determine the

final prediction of the next POI category. The output of the softmax
function can be used to represent a categorical distribution, which
is a probability distribution over N different possible outcomes.
Eq (7) is the predicted probability for the kth class from N child
categories given an internal vector h in Eq (6) and weight matrix
Wk where k = 1 to N .

P(y = k |h) = exp(Wkh)∑N
l=1 exp(Wlh)

(7)

We pick the output of the softmax layer with the highest prob-
ability for Accuracy@1 and top k probabilities for Accuracy@k.
Note that Inner LSTM only feeds one sequence of eP, j , eC, j as input
to output one taxonomy embedding hγ , j but Outer LSTM feeds τ
sequences of hγ , j , eT , j as input to output one internal vector h.

4 EXPERIMENTAL RESULT
In this section, we first describe the prerequisites for conducting
experiments, then present the experimental results from proposed
Nested LSTM and also other state-of-the-art approaches. Finally,
we analyze the taxonomy projected to an embedding space.

4.1 Experimental Setup
While training and testing models, Cross Entropy is used to mea-
sure the difference between the true class y and the distribution of
predictive classes ŷ, which is described in Eq (8):

J = − 1
N

N∑
k=1

P(y(k ))loдP(ŷ(k )) + λ

2
| |w | |2 (8)
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where N is the number of class of child category, P is the prob-
ability of softmax function in Eq (7), the superscript k indicates
the kth class of the child category, and λ is a L2 regularization
hyperparameter.

To best train the proposed Nested LSTM and other state-of-the-
art approaches, we manage to search for the best hyperparameters
by using 10-fold cross validation. Thenwe evaluate the performance
of each model on the test set.

For the evaluation metrics, we report Precision, Recall, Accu-
racy@1 and Accuracy@5 to provide a comprehensive study on the
performance evaluation of different models. Precision, Recall and
Accuracy@k are defined as:

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Neдatives

Accuracy@k =
# correct prediction in top k candidates

# total prediction

(9)

We compare the performance evaluation with other state-of-the-
art approaches, which are the variants of the basic LSTM model as
follows:

• LSTM-RNN:We reimplement LSTM-RNN proposed by [13]
that feeds child category xC, j as input features through an
embedding layer for j = 1 to τ .

• ST-RNN: We reimplement ST-RNN proposed by [11] that
feeds child category xC, j and check-in time xT , j as input
features through embedding layers for j = 1 to τ .

• ST-RNN+P: This model is an extension of ST-RNN. We
reimplement the model which feeds parent category xP, j ,
child category xC, j and check-in time xT , j as input features
through embedding layers for j = 1 to τ .

We use the softmax layer as the last layer to decide the final
prediction for these state-of-the-art models.

4.2 Result Summary
As the problem mentioned in Section 2.3, we try to find the best
value of τ for Nested LSTM. Figure 8 shows the three different eval-
uation metrics with different values of τ on state-of-the-art models
and Nested LSTM from Foursquare dataset, we also do the same
searching method on Jiepang dataset. Furthermore, Accuracy@1
and Accuracy@5 increase when τ = 5, arrive at the peak value
when τ = 30, and start to decrease until the end. Loss calculated by
Eq (8) also reaches the lowest point when τ = 30. We finally find
the balance point of τ which is not the corner value.

Table 1 shows the experimental results from different state-of-
the-art models and Nested LSTM with three different τ values se-
lected in both of our datasets. We calculate and report Accuracy@1,
Accuracy@5 and improvement from baseline for comprehensive
comparisons. The results demonstrate that Nested LSTM outper-
forms state-of-the-art models on both Foursquare and Jiepang
datasets. We observe that LSTM-RNN (the only approach here
without using check-in time) has the worst performance, indicating
that check-in time is an informative feature which should always
be included for behavior and intention modeling. When using the

(a) Accuracy@1 with different values of τ . Accuracy@1 of all models
increase when τ = 5, arrive at the peak value when τ = 30, and start to
decrease until the end.

(b) Accuracy@5 with different values of τ . Accuracy@5 of all models
increase when τ = 5, arrive at the peak value when τ = 30, and start to
decrease until the end.

(c) Loss with different values of τ . Loss of all models reach the lowest
point when τ = 30, and start to increase until the end.

Figure 8: Calculate the evaluationmetrics with different val-
ues of τ on state-of-the-art models and Nested LSTM from
Foursquare dataset.
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Table 1: Experimental results on both Foursquare and Jiepang datasets with various τ values. Notice that the proposed Nested
LSTM consistently outperforms the previous state-of-the-art approaches over different τ values.

Foursquare τ = 25 τ = 30 τ = 35
Model Accuracy@1 Accuracy@5 Accuracy@1 Accuracy@5 Accuracy@1 Accuracy@5

LSTM-RNN [13] 20.53% (baseline) 46.08% (baseline) 20.70% (baseline) 46.43% (baseline) 20.62% (baseline) 46.33% (baseline)
ST-RNN [11] 21.01% (+2.34%) 46.44% (+0.78%) 21.38% (+3.29%) 46.73% (+0.65%) 21.02% (+1.94%) 46.33% (+0.00%)
ST-RNN+P 21.24% (+3.46%) 47.25% (+2.54%) 21.48% (+3.77%) 47.42% (+2.13%) 20.97% (+1.70%) 46.93% (+1.30%)

Nested LSTM 21.72% (+5.80%) 48.02% (+4.21%) 22.14% (+6.96%) 48.96% (+5.45%) 21.87% (+6.06%) 48.06% (+3.73%)
Jiepang τ = 40 τ = 45 τ = 50
Model Accuracy@1 Accuracy@5 Accuracy@1 Accuracy@5 Accuracy@1 Accuracy@5

LSTM-RNN [13] 35.66% (baseline) 64.78% (baseline) 36.09% (baseline) 65.25% (baseline) 34.29% (baseline) 64.60% (baseline)
ST-RNN [11] 35.38% (-0.79%) 64.52% (-0.04%) 36.00% (-0.25%) 65.38% (+0.02%) 34.45% (+0.47%) 64.34% (-0.04%)
ST-RNN+P 35.58% (-0.22%) 65.30% (+0.08%) 36.28% (+0.53%) 66.29% (+1.59%) 34.44% (+0.44%) 64.84% (+0.37%)

Nested LSTM 37.55% (+5.30%) 66.98% (+3.40%) 37.99% (+5.27%) 68.20% (+4.52%) 37.00% (+7.90%) 67.19% (+4.00%)

(a) Precision of each parent category predicted by Nested LSTM. Nested LSTM
performs well on predicting category “Arts & Entertainment.”

(b) Recall of each parent category predicted by Nested LSTM. Nested LSTM can
accurately predict on category “Home, work, Others” and “Residence.”

Figure 9: Calculate Precision and Recall by Eq (9) for Nested
LSTM with τ = 30 from Foursquare dataset.

same set of input features, Nested LSTM outperforms ST-RNN+P
by every evaluation metric.

Furthermore, we provide Precision and Recall of each parent cate-
gory predicted by Nested LSTM from Foursquare dataset in Figure 9
calculated by Eq (9). From Figure 9(a), Nested LSTM performs well
on predicting category “Arts & Entertainment” but the difference of

each category prediction is slight. From Figure 9(b), Nested LSTM
can accurately predict on category “Home, work, Others” and “Resi-
dence” but incorrectly predicts on category “Food”, “Great Outdoors”,
“Nightlife Spot” and “Shop & Service”.

We further provide the confusion matrix of each parent category
predicted by Nested LSTM from Foursquare dataset after we nor-
malize the actual count in Figure 10. In general, category predictions
from Nested LSTM match the ground truth very well, as most of
the mass locates on the diagonal. Yet Nested LSTM seems to make
more predictions on “Home, work, Others” (notice the correspond-
ing column with slightly deeper color) than other categories. This
modeling behavior can be attributed to label imbalance: many users
in Foursquare dataset often check in at their own homes or work-
places, resulting in a larger number of check-ins with “Home, work,
Others.” This gives an intriguing opportunity to further improve
Nested LSTM with techniques for handling label imbalance, e.g.,
down-sampling; we leave this as an interesting and straight-line
future work.

4.3 Taxonomy Embedding Analysis
To detail the better performance of Nested LSTM, we analyze the
difference between taxonomy embedding hγ , j of Nested LSTM and
embedding vectors eC, j of ST-RNN+P, which both represent the
child categories. Figure 11 are the TSNE [14] graphs ofhγ , j and eC, j ,
which transfer high dimensions of vector into X-axis and Y-axis.
The dots with the same color in the TSNE graph indicate the child
categories from the same parent category in Foursquare dataset.
Figure 11(a) is messy and Figure 11(b) is organized with the same
color. Inner LSTM performs well on matching the hierarchical rela-
tionship of the path from the parent category to the child category
on taxonomy.

In addition, we provide two evaluation metrics: Silhouette Coeffi-
cient [14] and Euclidean Distance. Both of them are used to measure
the distance between clusters. The vectors of Nested LSTM and
ST-RNN+P are normalized before we calculate. Silhouette Coefficient
is calculated by using the mean of intra-cluster distance α and the
mean of nearest-cluster distance β for each sample in Eq (10).
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Figure 10: The confusion matrix of the parent category pre-
dicted by Nested LSTM from Foursquare dataset after we
normalize the actual count. The depth of colors represents
the proportion of each category.

β − α

max(α , β) (10)

The value of Silhouette Coefficient is in [−1; 1]. Silhouette Coeffi-
cient of Nested LSTM is 0.034 while ST-RNN+P is only -0.065, which
means Inner LSTM has the capability of clustering child categories.

We calculate the average of Euclidean Distance from each element
to the mean value of its cluster, as the radius of the cluster. Figure 12
shows the calculated results of Nested LSTMand ST-RNN+P. In each
parent category, Nested LSTM’s Euclidean Distance is smaller than
ST-RNN+P; on average, the mean of Nested LSTM is 0.812 while
ST-RNN+P is 0.919. These results show that taxonomy embedding
learned by Nested LSTM enables more distinct and clear clusters:
smaller intra-cluster distance and larger inter-cluster distance (both
effects captured by Silhouette Coefficient).

5 PRACTITIONERS’ GUIDE
Here we provide the practitioner’s guide to apply Nested LSTM for
forecasting next check-in category of a user:

• Construct training dataset: Build a database by including
the SQL files and partition user check-in sequences by their
unique ID described in Section 2.1. Filter out the user whose
total check-in count is less than τ + 1 times and the period
between each check-in is longer than a day. The remaining
part of the sequence is the training set, which is partitioned
as input features xP, j , xC, j , xT , j where j = 1 to τ of each
instance and the child category of (τ + 1)th check-in as y.

• Construct Nested LSTM: After constructing the training
set of xP, j , xC, j , xT , j and y, build a neural network model
with the structure described in Figure 7. The dimension of
embedding layers is a fixed value based on the scale of the
vocabulary size of category and check-in time. The dimen-
sion of softmax layer is the same as the size of the child
category. The dimension of Inner LSTM and Outer LSTM

(a) TSNE for ST-RNN+Pwith the Silhouette Coefficient of -0.065 (project to original
embedding space).

(b) TSNE for Nested LSTM with the Silhouette Coefficient of 0.034 (project to
original embedding space).

Figure 11: TSNE graphs for embedding vectors eC, j of ST-
RNN+P and taxonomy embeddinghγ , j of Nested LSTM from
Foursquare dataset. The dots with the same color in the
graphs indicate the child categories from the same parent
category.

Figure 12: The average of Euclidean Distance from each el-
ement to the mean value of its cluster, as the radius of the
cluster. On average, the mean of Nested LSTM is 0.812 while
ST-RNN+P is 0.919.

are optional based on τ . We find the best hyperparameters
via grid-search and cross-validation.
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After Nested LSTM are trained, each new incoming instance can
generate a prediction of the child category. It can be used for both
(a) offline analysis in other similar datacenters, and (b) serving as a
recommend system integrated into a cloud/cluster and connected
to mobile applications, with training via historical data offline.

6 RELATEDWORK
We classify the previous work into two parts as follows.

Conventional Approaches. The collaborative filtering (CF)
techniques can be tailored for POI prediction and may collaborative
filtering methods have been proposed [6, 9, 16]. Yuan et al. [22]
find that POIs are time-dependent, so they develop a model which
can capture temporal information to make the prediction more
accurate.

Besides CF techniques, Chang et al. [4] incorporate different
features in the LDA model for next POI prediction. Gao et al. [5]
propose a social-historical model based on Hierarchical Pitman-Yor
process for predicting the next check-in of a user. Ye et al. [21]
apply a framework which uses a mixed hidden Markov model to
predict the category of user activity at the next time.

None of these works apply Neural-based methods, e.g., RNN or
LSTM, to accurately predict the next users’ behavior.

Neural-based Approaches. As we know, RNN or LSTM have
been widely applied to model sequential data, and they also have
been successfully adopted in the prediction problems. For the typical
prediction task, e.g., movies, song, book, goods, Wu et al. [19]
propose the Recurrent Recommender Networks (RRN) which are
able to predict the movie which a user is interested in. Zhu et al.
[25] propose a new variant of LSTM called Time-LSTM to predict
what will a user buy next.

Contrast with typical prediction tasks, to predict a location is
more complex. We have to consider a wide variety of contextual
factors, e.g., temporal context, geographical influence, and sequen-
tial relations. Zhang et al. [23] implement the framework named
NEXT which predicts the next POI a user will visit. Liu et al. [11]
propose a novel method called Spatial Temporal Recurrent Neu-
ral Networks (ST-RNN) which models local temporal and spatial
contexts to predict next location.

Compared with the approaches above, we not only consider the
temporal and spatial contexts, but also take taxonomy from check-
in sequences into consideration. Nested LSTM provides an accurate
prediction on the category of next POI which a user is interested
in.

7 CONCLUSION
In this paper, we first analyze two large-scale LBSN datasets and
provide two observations: “work-n-relax” and “diurnal-n-nocturnal.”
Then we propose Nested LSTM to forecast the category of next
POI where a user is interested in. Thanks to Nested LSTM, we
now can answer the two motivational questions: “Is there any pat-
tern in location-based, mobile check-in activities?” “If yes, is it
possible to forecast a user’s next check-in intention, given his/her
check-in history?” Experimental results show that, Nested LSTM
achieves Accuracy@5 about 48.96% and 68.20% on Foursquare and
Jiepang datasets, respectively. The taxonomy embedding learned

by Nested LSTM achieves Silhouette Coefficient of 0.034 which out-
performs other state-of-the-art approaches. Inner LSTM captures
the hierarchical relationship of categories on taxonomy (parent
category—child category), and has the capability of better cluster-
ing child category. Finally, a practitioners’ guide is provided for
deploying Nested LSTM to predict the next POI category.
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