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ABSTRACT
Financial instability can lead to financial crises due to its contagion

or spillover effects to other parts of the economy. Having an accu-

rate measure of systemic risk gives central banks and policy makers

the ability to take proper actions in order to stabilize financial mar-

kets. Much work is currently being undertaken on the feasibility

of identifying and measuring systemic risk. In principle, there are

two main approaches for learning interlinkages between financial

institutions. First approach constructs a mathematical model of

financial market participant relations as a network/graph by using

a combination of information extracted from financial statements

such as the market value of liabilities of counterparties. Second ap-

proach learns the network via an econometric model that estimates

those relations from financial data. In this paper, we develop a data-

driven econometric framework that promotes an understanding of

the relationship between financial institutions using a nonlinearly

modified Granger-causality network. Unlike existing literature, it

is not limited to a linear pairwise estimations. The method allows

for nonlinearity and has predictive power over future economic

activity through a time-varying network of relationships. Moreover,

it can quantify the interlinkages between financial institutions. We

also show how the model improves the measurement of systemic

risk and explain its link to generalized variance decompositions

networks. We apply the method to the daily returns of U.S. financial

Institutions including banks, broker and insurance companies to

identify the level of systemic risk in the financial sector and the

contribution of each financial institution.

KEYWORDS
Systemic risk; Risk Measurement; Financial Linkages and Conta-

gion; Nonlinear Granger Causality; Directed Information Graphs

ACM Reference Format:
Jalal Etesami, Ali Habibnia, and Negar Kiyavash. 2018. Econometric Mod-

eling of Systemic Risk: A Time Series Approach. In MiLeTS ’18, August
2018, London, United Kingdom. ACM, New York, NY, USA, Article 4, 9 pages.

https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MiLeTS ’18, August 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

1 INTRODUCTION
Understanding the interconnection between the financial institu-

tions especially in the context of systemic risk is of great importance.

In principle, there are two main approaches to measure such in-

terconnections between the institutions in the literature which

mainly represented as a directed graph. One is based on a mathe-

matical model of financial market participant relations derived from

a combination of information extracted from financial statements

like the market value of liabilities of counterparties. The other is

the approach adopted herein as well which is based on statistical

analysis of financial series related to the institutions of interest.

Regardless, most of the existing approaches in the literature are

built on pairwise comparisons or assumption of linearity. For in-

stance, [7] propose several measures of systemic risk to capture

the connections between the monthly returns of different financial

institutions (hedge funds, banks, brokers, and insurance compa-

nies) based on Granger-causality tests. [7] use principle component

analysis to estimate the number and importance of common factors

driving the returns of financial institutions, and they use pairwise
Granger-causality tests to identify the network of Granger-causal

relations among those institutions.

Another related work is [10]. In this work, the authors propose a

connectedness measure based on generalized variance decomposi-

tion (GVD) and consequently, define a weighted, directed network.

The measure introduced in this work is limited to linear dynamical

systems, specifically, those formulated by data-generating processes

(DGPs). Beside the restrictive linearity assumption, as we will dis-

cuss later in Section 3.2, this measure also suffers from disregarding

the entire network akin to pairwise analysis commonly used in the

literature.

[4] focus on one particular network structure: the long-run vari-

ance decomposition network (LVDN). Similar to [10], the LVDN

defines a weighted and directed graph where the weight that is

associated with edge (i, j) represents the proportion of h-step-ahead
forecast error variance of variable i which is accounted for by the

innovations in variable j. LVDNs are characterized by the infinite

vector moving average (VMA) and as such are limited to linear

systems.

Connectedness measures based on correlation remain wide-

spread. They also measure only pairwise association and are mainly

studied for linear Gaussian dynamics. This makes them of limited

value in financial-market contexts. Different approaches have been

developed to relax these conditions. For example, equi-correlation

approach in [11] uses average correlations across all pairs. The

CoVaR approach of [2] measures the value-at-risk (VaR) of financial

institutions conditional on other institutions experiencing financial

https://doi.org/10.475/123_4
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distressand. The marginal expected shortfall (MES) approach of [1]

measures the expected loss to each financial institution conditional

on the entire set of institutions’ poor performance. Although these

measures rely less on linear Gaussian methods and are certainly of

interest, they measure different things, and a general framework

that can be used to capture the connectedness in different networks

remains elusive. Introducing such measure is the main purpose of

this work.

Herein, we develop a framework for learning the interaction

network that allows for incorporating nonlinearities in the data

and go beyond pairwise relationships among time series. We also

show how the model improves the measurement of systemic risk

and explain how it relates to concept of Granger-causality and

variance decompositions method.

2 CAUSAL NETWORK
In order to investigating the dynamic of systemic risk, it is important

to measure the causal relationship between financial institutions. In

this section, we propose a statistical approach to learn such causal

interconnections using Granger causality [14].

2.1 Graphical Models and Granger Causality
Researchers from different fields have developed various graphi-

cal models suitable for their application of interest to encode in-

terconnections among variables or processes. [18] define Markov

Networks, Bayesian networks (BNs), and [25] introduces Dynamic

Bayesian networks (DBNs). These are three examples of such graph-

ical models that have been used extensively in the literature. In

these particular graphical models, nodes represent random vari-

ables.

Markov networks are undirected graphs that represent the con-

ditional independence between the variables. On the other hand

BNs and DBNs are directed acyclic graphs (DAGs) that encode

conditional dependencies in a reduced factorization of the joint

distribution.

Since the size of such graphical models depends on the time-

homogeneity and the Markov order of the random processes. There-

fore, in general, the graphs can grow with time. As an example, the

DBN graph of a vector autoregressive (VAR) introduced by [9] with

m processes each of order L requiresmL nodes. As such they are

not suitable for succinct visualization of relationships between the

time series such as systemic risks.

In this work, similar to [28] and [23], we use directed information

graphs (DIGs) to represent interconnections among the financial

institutions in which each node represents a time series . Below,

we formally introduce this type of graphical models. We use an

information-theoretical generalization of the notion of Granger

causality to determine the interconnection between time series.

The basic idea in this framework was originally introduced by

Wiener [33], and later formalized by Granger [14]. The idea reads

as follows: “we say that X is causing Y if we are better able to

predict the future of Y using all available information than if the

information apart from the past of X had been used."

Despite broad philosophical viewpoint of [15], his formulation

for practical implementation was done using multivariate autore-

gressive (MVAR) models and linear regression. This version has

been widely adopted in econometrics and other disciplines. More

precisely, in order to identify the influence of Xt on Yt in a MVAR

comprises of three time series {X ,Y ,Z }, Granger’s idea is to com-

pare the performance of two linear regressions: the first predictor

is non-nested that is it predicts Yt given {X t−1,Y t−1,Z t−1}, where

X t−1
denotes the time series X up to time t − 1 and the second

predictor is nested that is it predicts Yt given {Y t−1,Z t−1}. Clearly,

the performance of the second predictor is bounded by the first

predictor. If they have the same performance, then we say X does

not Granger cause Y .
We will introduce directed information (DI), an information-

theoretical measure that generalized Granger causality beyond

linear models. [29] used this measure to infer causality in dynami-

cal systems. DI has been used in many applications to infer causal

relationships. For example, [30] and [17] used it for analyzing neu-

roscience data and [12] applied for market data .

2.2 Directed Information Graphs (DIGs)
In the rest of this section, we describe how the DI can capture

the interconnections in causal
1
dynamical systems (linear or non-

linear) and formally define DIGs.

Consider a dynamical system comprised of three time series

{X ,Y ,Z }. To answer whether X has influence on Y or not over

time horizon [1,T ], we compare the average performance of two

particular predictors with predictions p and q over this time hori-

zon. The first predictor uses the history of all three time series

while the second one uses the history of all processes excluding

process X . On average, the performance of the predictor with less

information (the second one) is upper bounded by the performance

of the predictor with more information (the first one). However,

when the prediction of both predictors, i.e., p and q are close over

time horizon [1,T ], then we declare that X does not cause Y in this

time horizon; otherwise, X causes Y .
In order to measure the performance of a predictor, we consider

a nonnegative loss function, ℓ(p,y), which defines the quality of the

prediction. This loss function increases as the prediction p deviates

more from the true outcome y. Although there are many candidate

loss functions, e.g. the squared error loss, absolute loss, etc, for the

purpose of this work we consider the logarithmic loss.

Moreover, in our setting, the prediction p lies in the space of

probability measures over y. More precisely, we denote the past of

all processes up to time t−1 by F t−1
that is the σ -algebra generated

by {X t−1,Y t−1,Z t−1}, where X t−1
represents the time series X up

to time t − 1, and denote the past of all processes excluding process

X , up to time t − 1 by F t−1
−X .

The prediction of the first predictor that is non-nested at time t is
given by pt := P(Y (t)|F t−1) that is the conditional distribution of

Y (t) given the past of all processes and the second predictor which

is nested is given by qt := P(Yt |F
t−1
−X ).

Given a prediction p for an outcome y ∈ Y, the log loss is

defined as ℓ(p,y) := − logp(y). This loss function has meaningful

information-theoretical interpretations. The log loss is the Shannon

code length, i.e., the number of bits required to efficiently represent

1
In causal systems, given the full past of the system, the present of the processes

become independent. In other words, there are no simulations relationships between

the time series.
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a symbol y drawn from distribution p. Thus, it may be thought of

the description length of y.
When the outcome yt is revealed for Yt , the two predictors incur

losses ℓ(pt ,yt ) and ℓ(qt ,yt ), respectively. The reduction in the loss

(description length of yt ), known as regret is defined as

rt := ℓ(qt ,yt ) − ℓ(pt ,yt ) = log

pt
qt
= log

P(Yt = yt |F
t−1)

P(Yt = yt |F
t−1
−X )

≥ 0.

Note that the regrets are non-negative. The average regret over the

time horizon [1,T ] given by
1

T
∑T
t=1 E[rt ], where the expectation

is taken over the joint distribution of X , Y , and Z is called directed
information (DI). This will be our measure of causation and its

value determines the strength of influence. If this quantity is close

to zero, it indicates that the past values of time series X contain no

significant information that would help in predicting the future of

time series Y given the history of Y and Z . This definition may be

generalized to more than 3 processes as follows,

Definition 1. Consider a network ofm time seriesR := {R1, ...,Rm }.
We declare Ri influences Rj over time horizon [1,T ], if and only if

I (Ri → Rj | |R−{i, j }) :=
1

T

T∑
t=1
E

[
log

P(Rj,t |F
t−1)

P(Rj,t |F
t−1
−{i })

]
> 0, (1)

where R−{i, j } := R \ {Ri ,Rj }. F t−1 denotes the sigma algebra gen-
erated by Rt−1 := {Rt−1

1
, ...,Rt−1m }, and F t−1

−{i } denotes the sigma

algebra generated by {Rt−1
1
, ...,Rt−1m } \ {Rt−1i }.

Definition 2. Directed information graph (DIG) of a set ofm pro-
cesses R = {R1, ...,Rm } is a weighted directed graph G = (V ,E,W ),
where nodes represent processes (V = R) and arrow (Ri ,Rj ) ∈ E
denotes that Ri influences Rj with weight I (Ri → Rj | |R−{i, j }). Con-
sequently, (Ri ,Rj ) < E if and only if its corresponding weight is zero.

Remark 1. Pairwise comparison has been applied in the literature
to identify the causal structure of time series. The works by [7], [6],
and [3] are three such examples. Pairwise comparison is not correct
in general and fails to capture the true underlying network. For more
details see the work by [28].

A causal model allows a factorization of the joint distribution

in some specific ways. It was shown in [28] that under a mild as-

sumption, the joint distribution of a causal discrete-time dynamical

system withm time series can be factorized as follows,

PR =
m∏
i=1

PRi | |RBi
, (2)

where Bi ⊆ −{i} := {1, ...,m} \ {i} is the minimal
2
set of processes

that causes process Ri , i.e., parent set of node i in the corresponding

DIG. Such factorization of the joint distribution is called minimal

generative model. In Equation (2), P(·| |·) is called causal condi-

tioning and defined as follows PRi | |RBi
:=

∏T
t=1 PRi,t |Ft−1Bi∪{i }

, and

F t−1
Bi∪{i }

= σ {Rt−1Bi∪{i }
}.

It is important to emphasize that learning the causal network

using DI does not require any specific model for the system. There

are different methods that can estimate (1) given i.i.d. samples of the

time series such as plug-in empirical estimator, k-nearest neighbor

2
Minimal in terms of its cardinality.
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Figure 1: Corresponding DIG of the system in (3).

estimator, etc. For more details related to theses estimators see the

works by [16], [13], and [19].

In general, estimating DI in (1) is a complicated task and has

high sample complexity. However, knowing some side information

about the system can simplify the learning task. In the following

section, we describe learning the causal network of linear systems.

Later in Section 4, we discuss generalization to non-linear models.

2.3 Strength of Causal Relationships
In this section, we show that the DI introduced in (1) can capture

the strength of causal relationships in a network. We do so using

a simple linear example and then generalize it to more general

systems.

Consider a network of three time series ®Xt = (X1,t ,X2,t ,X3,t )
T

with the following joint dynamics

®Xt =
©«
0 0.1 0.3

0 0 −0.2

0 0 0

ª®¬ ®Xt−1 + ®ϵt , (3)

where ®ϵt denotes a vector of exogenous noises that has normal dis-

tribution with mean zero and covariance matrix I. Figure 1 shows
the corresponding DIG of this network. Note that in this particu-

lar example where the relationships are linear, the support of the

coefficient matrix encodes the corresponding DIG of the network.

In order to compare the strength of causal relationshipsX2 → X1

and X3 → X1 over a time horizon [1,T ], we compare the perfor-

mance of two linear predictors of X1,t over that time horizon. The

first predictor (L1) predicts X1,t using {X t−1
1
,X t−1

3
} and the other

predictor (L2) uses {X
t−1
1
,X t−1

2
}. If L1 shows better performance

compared to L2, it implies that X3 contains more relevant infor-

mation about X1 compared to X2. In other words, X3 has stronger

influence on X1 compared to X2. To measure the performance of

L1 and L2, we consider the mean squared errors of the prediction

over the time horizon [1,T ].

L1 : e1 :=
1

T

T∑
t=1

min

yt ∈At
E| |X1,t − yt | |

2, At := span{X t−1
1
,X t−1

3
},

L2 : e2 :=
1

T

T∑
t=1

min

zt ∈Bt
E| |X1,t − zt | |

2, Bt := span{X t−1
1
,X t−1

2
}.

It is easy to show that e1 = 1+ 0.12 and e2 = 1+ 0.32. Since e1 < e2,
we infer that X3 has stronger influence on X1 compared to X2.

Analogous to the directed information graphs, we can generalize

the above framework to non-linear systems. Consider a network

of m time series R = {R1, ...,Rm } with corresponding DIG G =
(V ,E,W ). Suppose (Ri ,Rj ) and (Rk ,Rj ) belong to E, i.e., Ri and
Rk both are parents of Rj . We say Ri has stronger influence on

Rj compared to Rk over a time horizon [1,T ] if P(Rj,t |F
t−1
−{k }) is a

better predictor for Rj,t compared to P(Rj,t |F
t−1
−{i }) over that time

horizon. In other words, Ri has stronger influence on Rj compared
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to Rk , if

1

T

T∑
t=1
E

[
log

P (Rj,t |Ft−1−{k })

P (Rj,t |Ft−1−{i })

]
> 0.

The above inequality holds if and only if I (Ri → Rj | |R−{i, j }) >

I (Rk → Rj | |R−{k, j }). Thus, the DI in (1) can quantify the causal

relationships in a network. For instance, looking again at the system

in (3), we obtain I (X2 → X1 | |X3) =
1

2
log(1.0104) < 1

2
log(1.09) =

I (X3 → X1 | |X2).

3 DIG OF LINEAR MODELS
Herein, we study the causal network of linear systems. Consider

a set ofm stationary time series, and for simplicity assume they

have zero mean, such that their relationships are captured by the

following model:

®Rt =

p∑
k=1

Ak ®Rt−k + ®ϵt , (4)

where ®Rt = (R1,t , ...,Rm,t )
T
, andAk s arem×mmatrices. Moreover,

we assume that the exogenous noises, i.e., ϵi,t s are independent
and also independent from {Rj,t }. For simplicity, we assume that

the {ϵi,t } have mean zero. For the model in (4), it was shown in

[12] that I (Ri → Rj | |R−{i, j }) > 0, if and only if
∑p
k=1 |(Ak )j,i | > 0,

where (Ak )j,i is the (j, i)th entry of matrix Ak . Thus, to learn the

corresponding causal network (DIG) of this model, instead of es-

timating the DIs in (1), we can check whether the corresponding

coefficients are zero or not. To do so, we use the Bayesian infor-

mation criterion (BIC) as the model-selection criterion to learn the

parameter p as descibed by [31], and use F-tests to check the null

hypotheses that the coefficients are zero as descibed by [22].

[24] use Wiener filtering as another alternative approach to

estimate the coefficients and consequently learn the DIG. The idea

of this approach is to find the coefficients by solving the following

optimization problem,

{ ˆA1, ..., ˆAp } = arg min

B1, ...,Bp
E

[
1

T

T∑
t=1

| | ®Rt −

p∑
k=1

Bk ®Rt−k | |
2

]
.

This leads to a set of Yule-Walker equations that can be solved

efficiently by Levinson-Durbin algorithm introduced by [26].

3.1 DIG of GARCH models
The relationship between the coefficients of the linearmodel and the

corresponding DIG can easily be extended to the financial data in

which the variance of {ϵi,t }
T
t=1 are no longer independent of {Ri,t }

but due to the heteroskedasticity, they are F t−1
i -measurable. More

precisely, in financial data, the returns are modeled by GARCH that

is given by

Ri,t |F
t−1 ∼ N(µi,t ,σ

2

i,t ),

σ 2

i,t = α0 +

q∑
k=1

αk (Ri,t−k − µi,t )
2 +

s∑
l=1

βlσ
2

i,t−l ,
(5)

where αk s and βl s are nonnegative constants.

PROPOSITION 1. Consider a network of time series whose dy-
namic is given by (5). In this case, there is no arrow from Rj to Ri in
its corresponding DIG, i.e., Rj does not cause Ri if and only if

E[Ri,t |F
t−1] = E[Ri,t |F

t−1
−{j }], ∀t . (6)

Multivariate GARCH models are a a generalization of (5) in

which the variance of ei,t is F t−1
-measurable. In this case, not

only µi,t but also σ
2

i,t capture the interactions between the returns.

More precisely, in multivariate GARCH, we have

®Rt |F
t−1 ∼ N(®µt ,Ht ),

vech[Ht ] = Ω0 +

q∑
k=1

Ωkvech[®ϵt−k ®ϵ
T
t−k ] +

p∑
l=1

Γlvech[Ht−l ],

where ®µt is anm×1 array,Ht is anm×m symmetric positive definite

and F t−1
-measurable matrix, and ®ϵt = ®Rt − ®µt . Note that vech

denotes the vector-half operator, which stacks the lower triangular

elements of anm ×m matrix as an (m(m + 1)/2) × 1 array.

PROPOSITION 2. Consider a network of time series whose dy-
namic is captured by a multivariate GARCH model. In this case, there
is no arrow from Rj to Ri in its corresponding DIG, i.e., Rj does not
influence Ri if and only if both the condition in Proposition 1 and the
following condition hold

E[(Ri,t − µi,t )
2 |F t−1] = E[(Ri,t − µi,t )

2 |F t−1
−{j }], ∀t . (7)

Remark 2. Recall that as we mentioned in Remark 1, the pairwise
Granger-causality calculation, in general, fails to identify the true
causal network. It was proposed by [7] that the returns of the ith
institution linearly depend on the past returns of the jth institution,
when E[Ri,t |Ft−1] = E[Ri,t |Rj,t−1, Ri,t−1, {Rj,τ − µ j,τ }t−2τ=−∞, {Ri,τ −
µi,τ }t−2τ=−∞]. This test is obtained based on pairwise Granger-causality
calculation and does not consider non-linear causation through the
variance of {ϵi }. For instance, if the returns of two institutions Rj and
Rk cause the returns of the ith institution, then the above equality
does not hold, because Rk cannot be removed from the conditioning.

3.2 DIG of Moving-Average (MA) Models
[27] show that the model in (4) can be represented as an infinite

moving average (MA) or data-generating process (GDP), as long as

®R(t) is covariance-stationary, i.e., all the roots of |I −
∑p
k=1 Akz

k |

fall outside the unit circle : ®Rt =
∑∞
k=0 Wk ®ϵt−k , where Wk = 0 for

k < 0, W0 = I, and Wk =
∑p
l=1Wk−lAl . In this representation,

{ϵi }s are called shocks and if they are independent, they are also

called orthogonal.

In this section, we study the causal structure of a MA model of

finite order p. Consider a moving average model with orthogonal

shocks given by

®Rt =

p∑
k=0

Wk ®ϵt−k , (8)

where Wi s arem ×m matrices such that W0 is non-singular with

nonzero diagonals and without loss of generality, we can assume

that diaд(W0) is the identity matrix. Equation (8) can be written
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as ®Rt = W0®ϵt + P(L)®ϵt−1, where P(L) :=
∑p
k=1WkL

k−1
. Subse-

quently, we have

W−1
0

®Rt = ®ϵt +
∞∑
k=1

(−1)k−1
(
W−1

0
P(L)

)k
W−1

0

®Rt−k . (9)

This representation is equivalent to an infinite AR model. Hence,

using the result by [12], we can conclude the following corollary.

COROLLARY 1. Consider a MA model described by (8) with or-
thogonal shocks such thatW0 is non-singular and diagonal. In this
case, Rj does not influence Ri if and only if the corresponding coeffi-
cients of {Rj,t−k }k>0 in Ri ’s equation are zero.

We studied the DIG of a MA model with orthogonal shocks.

However, the shocks are rarely orthogonal in practice. To identify

the causal structure of such systems, we can apply the whitening

transformation to transform the shocks into a set of uncorrelated

variables. More precisely, supposeE[®ϵt ®ϵ
T
t ] = Σ, where the Cholesky

decomposition of Σ isVVT . Hence,V−1®ϵt is a vector of uncorrelated
shocks. Using this fact, we can transform (8) with correlated shocks

into

®Rt =

p∑
k=0

W̃k ®̃ϵt−k , (10)

with uncorrelated shocks, where
®̃ϵt := V−1®ϵt and W̃k :=WkV.

Remark 3. [10] applied the generalized variance decomposition
(GVD) method to identify the population connectedness or in another
word the causal structure of a MAmodel with correlated shocks. Using
this method, they monitor and characterize the network of major U.S.
financial institutions during 2007-2008 financial crisis. In this method,
the weight of Rj ’s influence on Ri in (8) was defined to be proportional
to di, j =

∑p
k=0

(
(WkΣ)i, j

)
2

, where (A)i, j denotes the (i, j)-th entry
of matrix A. Recall that E[®ϵt ®ϵTt ] = Σ. This method also seems to
suffer from disregarding the entire network akin to pairwise analysis
commonly used in traditional application of the Granger-causality.

4 DIG OF NON-LINEAR MODELS
DIG as defined in Definition 2 does not require any assumptions on

the underlying model. But, similar to the analysis by [6], side infor-

mation about the model class can simplify computation of (1). For

instance, let us assume thatR is a first-orderMarkov chainwith tran-

sition probabilities: P(Y t |R
t−1) = P(Rt |Rt−1). In this setup, I (Ri →

Rj | |R−{i, j }) = 0 if and only if P(Rj,t |Rt−1) = P(Rj,t |R−{i },t−1),∀t .
Recall that R−{i },t−1 denotes {R1,t−1, ...,Rm,t−1} \ {Ri,t−1}. Fur-

thermore, suppose that the transition probabilities are represented

through a logistic function similar to the work by [6]. More specifi-

cally, for any subset of processes S := {Ri1 , ...,Ris } ⊆ R, we have

P(Rj,t |Ri1,t−1, ...,Ris ,t−1) :=
exp( ®αT

S
®US)

1 + exp( ®αT
S
®US)
,

where ®UT
S

:=
⊗

i ∈S(1,Ri,t−1) = (1,Ri1,t−1) ⊗ (1,Ri2,t−1) ⊗ · · · ⊗

(1,Ris ,t−1), ⊗ denotes the Kronecker product, and ®αS is a vector of

dimension 2
s × 1. Under these assumptions, the causal discovery

in the network reduces to the following statement: Ri does not

influence Rj if and only if all the terms of ®UR depending on Ri are
equal to zero. More precisely:

®UR = ®UR
−{i }

⊗ (1,Ri,t−1) = ( ®UR
−{i }
, ®UR

−{i }
Ri,t−1).

Let ®αTR = ( ®αT
1
, ®αT

2
), where ®α1 and ®α2 are the vectors of coefficients

corresponding to ®UR
−{i }

and ®UR
−{i }

Ri,t−1, respectively. Then Ri 9

Rj if and only if ®α2 = 0.

Multiple chain Markov switching model (MCMS)-VAR of [5] are

a family of non-linear models, in which the relationship between

time series Y t is given by

Yi,t = µi (Si,t ) +

p∑
k=1

m∑
j=1

(Bk (Si,t ))i, jYj,t−k + ϵi,t , (11)

and ®ϵt := (ϵ1,t , ..., ϵm,t ) ∼ N(0, Σ( ®St )), where the mean, the lag

matrices, and the covariance matrix of the error terms all depend

on a latent random vector ®St known as the state of the system.

Si,t represents the state variable associated with Yi,t that can take

values from a finite set S. The random sequence { ®St } is assumed

to be a time-homogenous first-order Markov process with one-step

ahead transition probability P( ®St |S
t−1,Y t−1) = P( ®St |St−1). Fur-

thermore, given the past of the states, the presents are independent,

i.e., P ( ®St |S t−1) =
∏

j P (Sj,t |S t−1). Next result stresses a set of con-

ditions under which by observing only the time series Y t , we are
able to identify the causal relationships between the processes.

PROPOSITION 3. Consider a MCMS-VAR in which Σ( ®St ) is diag-
onal for all ®St . In this case, I (Yj → Yi | |Y−{i, j }) = 0 if

• (Bk (si,t ))i, j = 0 for all realizations si,t ,
• (Σ( ®St ))i,i = (Σ(Si,t ))i,i ,
• P(Sk,t |S

t−1, S−{k },t ) = P(Sk,t |Sk,t−1) for every k .

Note that the conditions introduced in this proposition are slightly

different from the ones of [5]. But notice that [5] study the causal

relationships between the time series given the state variables. As-

suming the state variables are given is not realistic as they are

hidden.

5 EXPERIMENTAL RESULT
Herein, we apply the proposed methods to identify and monitor

the evolution of connectedness among major financial institutions

during 2006-2016. We obtained the data for individual banks, bro-

ker/dealers, and insurers, from which we selected the daily returns

of all companies listed in Table 1.

5.1 Non-linearity Test
We applied a non-linearity test on the data to determine whether the

underlying structure within the recorded data is linear or nonlin-

ear. The non-linearity test applied is based on non-linear principle

component analysis (PCA) of [20]. This test works as follows, the

range of recorded data is divided into smaller disjunct regions; and

accuracy bounds are determined for the sum of the discarded eigen-

values of each region. If this sum is within the accuracy bounds

for each region, the process is assumed to be linear. Conversely, if

at least one of these sums is outside, the process is assumed to be

nonlinear.
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Banks
1 FNMA US 16 BNS US

2 AXP US 17 STI US

3 FMCC US 18 C US

4 BAC US 19 MS US

5 WFC UN 20 SLM US

6 JPM US 21 BBT US

7 DB US 22 USB US

8 NTRS US 23 TD US

9 RY US 24 HSBC US

10 PNC US 25 BCS US

11 STT US 26 GS US

12 COF US 27 MS US

13 BMO US 28 CS US

14 CM US

15 RF UN

Insurances
1 MET US 16 PFG US

2 ANTM US 17 LNC US

3 AET US 18 AON US

4 CNA US 19 HUM US

5 XL US 20 MMC US

6 SLF US 21 HIG US

7 MFC US 22 CI US

8 GNW US 23 ALL US

9 PRU US 24 BRK/B US

10 AIG US 25 CPYYY US

11 PGR US 26 AHL US

12 CB US

13 BRK/A US

14 UNH US

15 AFL US

Brokers
1 MS US 16 WDR US

2 GS US 17 EV US

3 BEN US 18 ITG UN

4 MORN US 19 JNS US

5 LAZ US 20 SCHW US

6 ICE US 21 ETFC US

7 AINV US 22 AMTD US

8 SEIC US

9 FII US

10 RDN US

11 TROW US

12 AMP US

13 GHL US

14 AMG US

15 RJF US

Table 1: . List of companies in our experiment.

More precisely, the second step in this test requires computation

of the correlation matrix for each of the disjunct regions. Since the

elements of this matrix are obtained using a finite dataset, apply-

ing t-distribution and χ2-distribution establish confidence bounds

for both estimated mean and variance, respectively. Subsequently,

these confidence bounds can be utilized to determine thresholds for

each element in the correlation matrix. Using these thresholds, the

test calculates maximum and minimum eigenvalues relating to the

discarded score variables, which in turn allows the determination

of both a minimum and a maximum accuracy bound for the vari-

ance of the prediction error of the PCA model. This is because the

variance of the prediction error is equal to the sum of the discarded

eigenvalues. If this sum lies inside the accuracy bounds for each

disjunct region, a linear PCA model is then appropriate over the

entire region. Alternatively, if at least one of these sums is outside

the accuracy bounds, the error variance of the PCA model residu-

als then differs significantly for this disjunct region and hence, a

nonlinear model is required.

We divided the operating region into 3 disjunct regions. The

accuracy bounds for each disjuct region and also sum of the dis-

carded eigenvalues were computed. These bounds were based on

thresholds for each element of the correlation matrix corresponding

to confidence level of 95%. Note that the processes were normalized

with respect to the mean and variance of the regions for which

the accuracy bounds were computed. Figure 2 shows the accuracy

bounds and the sum of the discarded eigenvalues. As figures 2-(a)

and 2-(b) illustrate, the recorded financial data is nonlinear.

5.2 Estimating the DIs
As we mentioned earlier, there are different methods that can be

used to estimate (1) given i.i.d. samples of the time series such as

plug-in empirical estimator and k-nearest neighbor estimator. For

our experimental results, we used k-nearest method since it shows

relatively better performance compared to the other non-parametric

estimators. To do so, we used the fact that

I (Ri → Rj | |R−{i, j }) =
1

T

T∑
t=1

I (Rj,t ;R
t−1
i |Rt−1

−{i, j },R
t−1
j ),

where I (X ;Y |Z ) denotes conditional mutual information between

X and Y given Z . For more details see the book by [8]. Then, we

estimated each of the above conditional mutual information using

k-nearest method of [32]. Below, we describe the steps of k-nearest

method to estimate I (X ;Y |Z ).
Suppose that N +M i.i.d. realizations {X1, ...,XN+M } are avail-

able from PX ,Y ,Z , where Xi denotes the ith realization of (X ,Y ,Z ).
The data sample is randomly divided into two subsets S1 and S2 of
N andM points, respectively. In the first stage, an k-nearest density

estimator P̂X ,Y ,Z at the N points of S1 is estimated using theM re-

alizations of S2 as follows: Let d(x,y) denote the Euclidean distance

between points x and y and dk (x) denotes the Euclidean distance

between a point x and its k-th nearest neighbor among S2. The
k-nearest region is Sk (x) := {y : d(x,y) ≤ dk (x)} and the volume

of this region is Vk (x) :=
∫
Sk (x)

dn. The standard k-nearest density

estimator of [32] is defined as P̂X ,Y ,Z (x) := (k − 1)/MVk (x). Simi-

larly, we obtain k-nearest density estimators P̂X ,Z , P̂Y ,Z , and P̂Z .
Subsequently, the N samples of S1 is used to approximate the con-

ditional mutual information: Î (X ;Y |Z ) := 1

N
∑
i∈S1 log P̂X ,Y ,Z (Xi )+

log P̂Z (Xi ) − log P̂X ,Z (Xi ) − log P̂Y ,Z (Xi ). For more details corre-

sponding this estimator including its bias, variance, and confidence,

please see the works by[32] and [21].

5.3 DIG of the Financial Market
We learned the DIG of the financial institutions by estimating the

directed information quantities in (1). To do so, we divided the

data into four sectors each of length almost 36 months, 2006-2008,

2009-2011, 2011-2013, and 2013-2016. We assumed that the DIG

of the network did not change over each of these time periods.

Furthermore, the data collected per working day are assumed to be

i.i.d.. Hence, in this experiment the length of each time series was
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Figure 2: Benchmarking of the residual variances against accuracy bounds of each disjunct region.

almost 36 and for each time instance we had nearly 19 independent

realizations.

As we discussed in Section 2.2, in order to identify the influence

from node i on node j, we need to estimate I (Ri → Rj | |R−{i, j }),

which in this experiment, required estimating a joint distribution

of dimension 76. In general, without any knowledge about the

underlying distribution, estimating such object requires a large

amount of independent samples. Unfortunately, in this experiment,

we had limited number of independent samples. Thus, we reduced

the dimension by instead of conditioning on R−{i, j } that is a set of

size 74, we conditioned on a smaller subset K i, j of R−{i, j } with size

7. This set contained only those institutions with highest correlation

with Rj . In another words, we ordered the institutions in R−{i, j }
based on their correlation value with Rj , and picked the first 7 of

them. Afterward, we estimated I (Ri → Rj | |K i, j ) to identify the

connection between Ri and Rj .
Figures 3 and 4 show the resulting graphs. Note that the type of

institution causing the relationship is indicated by color: green for

brokers, red for insurers, and blue for banks.

In order to compare our results with other methods in the litera-

ture, we also learned the causal network of these financial institu-

tions by assuming linear relationships between the institutions and

applying linear regression. Similarly, we reduced the dimension of

the regressions by bounding the number of incoming arrows of each

node to be a subset of size 18. More precisely, we picked 18 most cor-

related institutions with node i , let say {Rj1 , ...,Rj18 } and obtained

the parents of i by solving minaj
∑
t |Ri,t −

∑
18

k=1 akRjk ,t−1 |
2
. The

resulting graphs are depicted in Figures 5 and 6.

From these networks, we constructed the following network-

based measures of systemic risk.

[7] introduced the degree of Granger causality (DGC) as a measure

of the risk of a system event. DGC is defined as the fraction of

statistically significant Granger causality relationships among all

pairs of financial institutions Table 2 presents the DGC values and

total number of connections of the DIGs and the networks obtain

by linear regression.

DIGs
2006-2008 0.1225 698

2009-2011 0.1114 635

2011-2013 0.1065 607

2013-2016 0.0930 530

Linear Models
2006-2008 0.1453 828

2009-2011 0.1288 734

2011-2013 0.1174 669

2013-2016 0.1216 693

Table 2: . DGC values and total number of connections.

Tables 3 and 4 represent the average number of connections

between the sectors e.g., 0.1719 fraction of connections are from

Banks to Insurances during 2006-2008 in the DIG.

6 CONCLUSION
In this work, we developed a data-driven econometric framework to

understand the relationship between financial institutions using a

non-linearly modified Granger-causality. Unlike existing literature,

it is not focused on a linear pairwise estimation. The proposed

method allows for nonlinearity and it does not suffer from pairwise

comparison to identify the causal relationships between financial

institutions.We also showhow themodel improve themeasurement

of systemic risk and explain the link between Granger-causality

and variance decomposition. We apply the model to the monthly

returns of U.S. financial Institutions including banks, broker, and

insurance companies to identify the level of systemic risk in the

financial sector and the contribution of each financial institution.
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(b) January 2009 to December 2011

Figure 3: Recovered DIG of the daily returns of the financial companies in Table 1. The type of institution causing the rela-
tionship is indicated by color: green for brokers, red for insurers, and blue for banks.
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(a) January 2011 to December 2013
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(b) January 2013 to June 2016

Figure 4: Recovered DIG of the daily returns of the financial companies in Table 1. The type of institution causing the rela-
tionship is indicated by color: green for brokers, red for insurers, and blue for banks.

2006-2008 2009-2011 2011-2013 2013-2016
Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br.

Insurance .1390 .1719 .1074 .1291 .1575 .1213 .1054 .1301 .1104 .1075 .1151 .1340

Bank .1361 .1332 .0702 .0866 .1402 .1039 .1417 .1631 .1021 .0774 .1830 .1302

Broker .0774 .1017 .0630 .0740 .929 .0945 .0906 .0873 .0692 .0774 .0774 .0981

Table 3: . Average number of connections between different sectors in the DIGs.

2006-2008 2009-2011 2011-2013 2013-2016
Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br.

Insurance .1896 .0688 .0737 .1785 .1076 .0640 .2033 .0792 .1016 .2107 .0851 .0678

Bank .0906 .1872 .0809 .1322 .1431 .0899 .1136 .1226 .1001 .1010 .1515 .1053

Broker .0857 .1063 .1171 .0790 .0708 .1349 .1226 .0673 .0897 .1082 .0895 .0808

Table 4: . Average number of connections between different sectors in the networks obtained using regression.
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(b) January 2009 to December 2011

Figure 5: Recovered network of the daily returns of the financial companies in Table 1 using linear regression. The type of
institution causing the relationship is indicated by color: green for brokers, red for insurers, and blue for banks.
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Figure 6: Recovered network of the daily returns of the financial companies in Table 1 using linear regression. The type of
institution causing the relationship is indicated by color: green for brokers, red for insurers, and blue for banks.
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